5 Transformation Between the Celestial and Terrestrial
Systems (16 February 2007)

The coordinate transformation to be used to transform from the terrestrial reference system (TRS)
to the celestial reference system (CRS) at the epoch ¢ of the observation can be written as:

[CRS] = Q&) RH)W(¢) [TRS], (1)

where Q(t), R(t) and W (t) are the transformation matrices arising from the motion of the celestial
pole in the celestial system, from the rotation of the Earth around the axis of the pole, and from
polar motion respectively. The frame as realized from the [TRS] by applying the transformations
W (t) and then R(t) will be called “the intermediate reference frame of epoch ¢.”

5.1 The Framework of IAU 2000 Resolutions

Several resolutions were adopted by the XXIVth General Assembly of the International Astronom-
ical Union (Manchester, August 2000) that concern the transformation between the celestial and
terrestrial reference systems and are therefore to be implemented in the IERS procedures. Such
a transformation being also required for computing directions of celestial objects in intermediate
systems, the process to transform among these systems consistent with the TAU resolutions is also
provided at the end of this chapter.

Resolution B1.3 specifies that the systems of space-time coordinates as defined by TAU Resolution
A4 (1991) for the solar system and the Earth within the framework of General Relativity are now
named the Barycentric Celestial Reference System (BCRS) and the Geocentric Celestial Reference
System (GCRS) respectively. It also provides a general framework for expressing the metric tensor
and defining coordinate transformations at the first post-Newtonian level.

Resolution B1.6 recommends that, beginning on 1 January 2003, the IAU 1976 precession model
and TAU 1980 theory of nutation be replaced by the precession-nutation model IAU 2000A (MHB
2000 based on the transfer functions of Mathews et al., (2002)) for those who need a model at the
0.2 mas level, or its shorter version IAU 2000B for those who need a model only at the 1 mas level,
together with their associated celestial pole offsets, published in this document.

Resolution B1.7 recommends that the Celestial Intermediate Pole (CIP) be implemented in place
of the Celestial Ephemeris Pole (CEP) on 1 January 2003 and specifies how to implement its
definition through its direction at J2000.0 in the GCRS as well as the realization of its motion
both in the GCRS and ITRS. Its definition is an extension of that of the CEP in the high frequency
domain and coincides with that of the CEP in the low frequency domain (Capitaine, 2000).

Resolution B1.8 recommends the use of the “non-rotating origin” (NRO) (Guinot, 1979) both in the
GCRS and the ITRS and these origins are designated as the Celestial Intermediate Origin (CIO)
and the Terrestrial Intermediate Origin (TIO). The “Earth Rotation Angle” is defined as the angle
measured along the equator of the CIP between the CIO and the TIO. This resolution recommends
that UT1 be linearly proportional to the Earth Rotation Angle and that the transformation between
the ITRS and GCRS be specified by the position of the CIP in the GCRS, the position of the CIP
in the ITRS, and the Earth Rotation Angle. It is recommended that the IERS takes steps to
implement this by 1 January 2003 and that the IERS will continue to provide users with data and
algorithms for the conventional transformation.

Following the recommendations above, this chapter of the IERS Conventions provides the expres-
sions for the implementation of the IAU resolutions using the new transformation which is described
in Resolution B1.8. It also provides the expressions which are necessary to be compatible with
the resolutions when using the conventional transformation. Numerical values contained in this
chapter have been slightly revised from earlier provisional values to ensure continuity of the IERS
products. Fortran subroutines implementing the transformations are described towards the end of
the chapter. More detailed explanations about the relevant concepts, software and IERS products
can be found in IERS Technical Note 29 (Capitaine et al., 2002).



5.2 Implementation of IAU 2000 Resolutions

In order to follow Resolution B1.3, the celestial reference system, which is designated here CRS,
must correspond to the geocentric space coordinates of the GCRS. TAU Resolution A4 (1991)
specified that the relative orientation of barycentric and geocentric spatial axes in BCRS and
GCRS are without any time dependent rotation. This requires that the geodesic precession and
nutation be taken into account in the precession-nutation model.

Concerning the time coordinates, IAU Resolution A4 (1991) defined TCB and TCG of the BCRS
and GCRS respectively, as well as another time coordinate in the GCRS, Terrestrial Time (TT),
which is the theoretical counterpart of the realized time scale TAI + 32.184 s and has been re-
defined by TAU resolution B1.9 (2000). See Chapter 10 for the relationships between these time
scales.

The parameter ¢, used in the following expressions, is defined by
t = (TT — 2000 January 1d 12h TT) in days/36525. (2)

This definition is consistent with TAU Resolution C7 (1994) which recommends that the epoch
J2000.0 be defined at the geocenter and at the date 2000 January 1.5 TT = Julian Date 2451545.0
TT.

In order to follow Resolution B1.6, the precession-nutation quantities to be used in the transfor-
mation matrix Q(t) must be based on the precession-nutation model TAU 2000A or TAU 2000B
depending on the required precision. In order to follow Resolution B1.7, the realized celestial pole
must be the CIP. This requires an offset at epoch in the conventional model for precession-nutation
as well as diurnal and higher frequency variations in the Earth’s orientation. According to this
resolution, the direction of the CIP at J2000.0 has to be offset from the pole of the GCRS in a
manner consistent with the TAU 2000A precession-nutation model. The motion of the CIP in the
GCRS is realized by the TAU 2000 model for precession and forced nutation for periods greater
than two days plus additional time-dependent corrections provided by the IERS through appro-
priate astro-geodetic observations. The motion of the CIP in the ITRS is provided by the IERS
through astro-geodetic observations and models including variations with frequencies outside the
retrograde diurnal band.

The realization of the CIP thus requires that the IERS monitor the observed differences (reported
as “celestial pole offsets” ) with respect to the conventional celestial position of the CIP in the GCRS
based on the TAU 2000 precession-nutation model together with its observed offset at epoch. It
also requires that the motion of the CIP in the TRS be provided by the IERS by observations
taking into account a predictable part specified by a model including the terrestrial motion of
the pole corresponding to the forced nutations with periods less than two days (in the GCRS)
as well as the tidal variations in polar motion. Two equivalent procedures were given in the
IERS Conventions (McCarthy, 1996) for the coordinate transformation from the TRS to the CRS.
The classical procedure, which was described in detail as option 1, makes use of the equinox for
realizing the intermediate reference frame of date ¢. It uses apparent Greenwich Sidereal Time
(GST) in the transformation matrix R(¢) and the classical precession and nutation parameters in
the transformation matrix Q(t).

The second procedure, which was described in detail as option 2, makes use of the “non-rotating
origin” to realize the intermediate reference frame of date t. It uses the “Earth Rotation Angle,”
originally referred to as “stellar angle” in the transformation matrix R(t), and the two coordinates
of the celestial pole in the CRS (Capitaine, 1990) in the transformation matrix Q(¢).

Resolutions B1.3, B1.6 and B1.7 can be implemented in any of these procedures if the requirements
described above are followed for the space-time coordinates in the geocentric celestial system, for
the precession and nutation model on which are based the precession and nutation quantities used
in the transformation matrix Q(¢) and for the polar motion used in the transformation matrix
W (t).

On the other hand, only the second procedure can be in agreement with Resolution B1.8, which
requires the use of the “non-rotating origin” in both the CRS and the TRS as well as the position



of the CIP in the GCRS and in the ITRS. However, the IERS must also provide users with data
and algorithms for the conventional transformation; this implies that the expression of Greenwich
Sidereal Time (GST) has to be consistent with the new procedure.

The following sections give the details of this procedure and the standard expressions necessary to
obtain the numerical values of the relevant parameters at the date of the observation.

5.3 Coordinate Transformation consistent with the IAU 2000 Resolutions

In the following, R;, Ro and R3 denote rotation matrices with positive angle about the axes 1,
2 and 3 of the coordinate frame. The position of the CIP both in the TRS and CRS is provided
by the z and y components of the CIP unit vector. These components are called “coordinates” in
the following and their numerical expressions are multiplied by the factor 1296000” /27 in order to
provide in arcseconds the value of the corresponding “angles” with respect to the polar axis of the
reference system.

The coordinate transformation (1) from the TRS to the CRS corresponding to the procedure
consistent with Resolution B1.8 is expressed in terms of the three fundamental components as
given below (Capitaine, 1990)

W(t) = R3(—5") - Ro(zp) - Ra(yp), (3)

x, and y, being the “polar coordinates” of the Celestial Intermediate Pole (CIP) in the TRS and s’
being a quantity which provides the position of the TIO on the equator of the CIP corresponding
to the kinematical definition of the NRO in the ITRS when the CIP is moving with respect to the
ITRS due to polar motion. The expression of s” as a function of the coordinates x, and y, is:

t

S0 =112 [ Gyt~ ) dr (4)
to

The use of the quantity s’, which was neglected in the classical form prior to 1 January 2003, is

necessary to provide an exact realization of the “instantaneous prime meridian.”

0 being the Earth Rotation Angle between the CIO and the TIO at date ¢ on the equator of the
CIP, which provides a rigorous definition of the sidereal rotation of the Earth.

Q(t) = R3(—E) - Ro(—d) - R3(E) - Rs(s), (6)
E and d being such that the coordinates of the CIP in the CRS are:
X =sindcos E, Y =sindsin E, Z = cosd, (7)

and s being a quantity which provides the position of the CIO on the equator of the CIP corre-
sponding to the kinematical definition of the NRO in the GCRS when the CIP is moving with
respect to the GCRS, between the reference epoch and the epoch ¢ due to precession and nutation.
Its expression as a function of the coordinates X and Y is (Capitaine et al., 2000)

s(t) = — /1t X (t)yitl_;égt)X B 4t — (59 No — S0 o), (8)

0

where 0 and Y are the positions of the CIO at J2000.0 and the z-origin of the GCRS respectively
and Ny is the ascending node of the equator at J2000.0 in the equator of the GCRS. Or equivalently,
within 1 microarcsecond over one century

s(t) = —=[X@®)Y(t) — X(to)Y (to)] + /tt X ()Y (t)dt — (0oNg — ZoNo).  (9)



The arbitrary constant ogNg — 9Ny, which had been conventionally chosen to be zero in previ-
ous references (e.g. Capitaine et al., 2000), is now chosen to ensure continuity with the classical
procedure on 1 January 2003 (see expression (36)).

Q(t) can be given in an equivalent form directly involving X and Y as

1—-aX? —aXY X
Qt)=| —aXxy 1-ay? Y R (s), (10)
-X -Y 1-a(X%24Y?)

with @ = 1/(1+cosd), which can also be written, with an accuracy of 1 pas, as a = 1/2+1/8(X?+
Y2). Such an expression of the transformation (1) leads to very simple expressions of the partial
derivatives of observables with respect to the terrestrial coordinates of the CIP, UT1, and celestial
coordinates of the CIP.

5.4 Parameters to be used in the Transformation

5.4.1 Schematic Representation of the Motion of the CIP
According to Resolution B1.7, the CIP is an intermediate pole separating, by convention, the

motion of the pole of the TRS in the CRS into two parts:

e the celestial motion of the CIP (precession/nutation), including all the terms with periods
greater than 2 days in the CRS (i.e. frequencies between —0.5 counts per sidereal day (cpsd)
and +0.5 cpsd),

e the terrestrial motion of the CIP (polar motion), including all the terms outside the retrograde
diurnal band in the TRS (i.e. frequencies lower than —1.5 cpsd or greater than —0.5 cpsd).

frequency in TRS __ __ | | | | | | | o

-3.5 -2.5 -1.5 -0.5 +0.5 +1.5 +2.5 (cpsd)
______ polar motion | | polar motion ______
frequency in CRS _ _ __ | | | | | | | o
—-2.5 —-1.5 -0.5 +0.5 +1.5 +2.5 +3.5 (cpsd)
|nutati0n|

5.4.2 Motion of the CIP in the ITRS

The standard pole coordinates to be used for the parameters x, and y,, if not estimated from
the observations, are those published by the IERS with additional components to account for the
effects of ocean tides and for nutation terms with periods less than two days.

(xpvyp) = (xvy)IERS + (Al’, Ay)tidal + (A(E, Ay)nutation;
where (z,y)rprs are pole coordinates provided by the IERS, (Az, Ay)tida; are the tidal compo-

nents, and (Az, Ay)nutation are the nutation components. The corrections for these variations are
described below.

Corrections (Axz, Ay)tida for the diurnal and sub-diurnal variations in polar motion caused by
ocean tides can be computed using a routine available on the website of the IERS Conventions (see
Chapter 8). Table 8.2 (from Ch. Bizouard), based on this routine, provides the amplitudes and
arguments of these variations for the 71 tidal constituents considered in the model. These subdaily
variations are not part of the polar motion values reported to and distributed by the IERS and
are therefore to be added after interpolation.

Recent models for rigid Earth nutation (Souchay and Kinoshita, 1997; Bretagnon et al., 1997;
Folgueira et al., 1998a; Folgueira et al., 1998b; Souchay et al., 1999; Roosbeek, 1999; Bizouard
et al., 2000; Bizouard et al., 2001) include prograde diurnal and prograde semidiurnal terms with
respect to the GCRS with amplitudes up to ~ 15 pas in Ay sineg and Ae. The semidiurnal
terms in nutation have also been provided both for rigid and nonrigid Earth models based on
Hamiltonian formalism (Getino et al., 2001, Escapa et al., 2002a and b). In order to realize the



CIP as recommended by Resolution B1.7, nutations with periods less than two days are to be
considered using a model for the corresponding motion of the pole in the ITRS. The prograde
diurnal nutations correspond to prograde and retrograde long periodic variations in polar motion,
and the prograde semidiurnal nutations correspond to prograde diurnal variations in polar motion
(see for example Folgueira et al. 2001). A table for operational use of the model for these variations
(Az, AY)nutation in polar motion for a nonrigid Earth has been provided by an ad hoc Working
Group (Brzezinski, 2002) based on nonrigid Earth models and developments of the tidal potential
(Brzeziniski, 2001; Brzeziniski and Capitaine, 2002; Mathews and Bretagnon, 2002). The amplitudes
of the diurnal terms are in very good agreement with those estimated by Getino et al. (2001).
Components with amplitudes greater than 0.5 pas are given in Table 5.1. The contribution from
the triaxiality of the core to the diurnal waves, while it can exceed the adopted cut-off level (Escapa
et al., 2002b; Mathews and Bretagnon, 2002), has not been taken into account in the table due
to the large uncertainty in the triaxiality of the core (Dehant, 2002, private communication). The
Stokes coefficients of the geopotential are from the model JGM-3.

The diurnal components of these variations (namely, the 10 terms listed in Table 5.1 with periods
near 1 day) should be considered similarly to the diurnal and semidiurnal variations due to ocean
tides (see Chapter 8). They are not part of the polar motion values reported to the TERS and
distributed by the IERS and should therefore be added after interpolation. The diurnal compo-
nents (Ax, AY)nutation can be computed with the routine PMsdnut.for, provided by Aleksander
Brzeziniski, available on the Conventions Center website <!>. The long-periodic terms, as well as
the secular variation, are already contained in the observed polar motion and need not be added
to the reported values.

5.4.3 Position of the TIO in the ITRS

The quantity s’ is only sensitive to the largest variations in polar motion. Some components of
s’ have to be evaluated, in principle, from the measurements and can be extrapolated using the
IERS data. Its main component can be written as:

s = —0.0015(a?/1.2 + a?)t, (11)

a. and a, being the average amplitudes (in arc seconds) of the Chandlerian and annual wobbles,
respectively in the period considered (Capitaine et al., 1986). The value of s’ will therefore be less
than 0.4 mas through the next century, even if the amplitudes for the Chandlerian and annual
wobbles reach values of the order of 0.5” and 0.1” respectively. Using the current mean amplitudes
for the Chandlerian and annual wobbles gives (Lambert and Bizouard, 2002):

s’ = —47 pas t. (12)

5.4.4 Earth Rotation Angle

The Earth Rotation Angle, 6, is obtained by the use of its conventional relationship with UT1 as
given by Capitaine et al. (2000),

0(T,) = 2m(0.7790572732640 + 1.00273781191135448T,), (13)

where Ty, =(Julian UT1 date—2451545.0), and UT1=UTC+(UT1-UTC), or equivalently (modulo
27), in order to reduce possible rounding errors,

0(T,) = 2x(UT1 Julian day fraction (14)
+0.7790572732640 4+ 0.00273781191135448T,,),

the quantity UT1—UTC to be used (if not estimated from the observations) being the TERS value.

Note, that for 0" UT1, the UT1 Julian day fraction in (14) is 0.5.

This definition of UT1 based on the CIO is insensitive at the microarcsecond level to the precession-
nutation model and to the observed celestial pole offsets. Therefore, in the processing of observa-
tional data, the quantity s provided by Table 5.2¢ must be considered as independent of observa-
tions.

Lftp://tai.bipm.org/iers/convupdt/chapter5/



Table 5.1  Coefficients of sin(argument) and cos(argument) in (Az, AyY)nutation due to tidal
gravitation (of degree n) for a nonrigid Earth. Units are pas; x denotes GMST+ 7
and the expressions for the fundamental arguments (Delaunay arguments) are given

by (41).
argument Doodson Period Zp Yp

nox I/ F D ©Q number (days) sin cos sin cos

4 0 0 O 0 0 -1 055.565 6798.3837  —0.03 0.63 —0.05 —0.55
3 0 -1 0 1 0 2 055.645 6159.1355 1.46 0.00 —0.18 0.11
3 0 -1 0 1 0 1 055.655 3231.4956 —28.53 —0.23 3.42 —-3.86
3 0 -1 0 1 0 0  055.665 2190.3501  —4.65 —0.08 0.55  —0.92
3 0 11 -1 0 0 056.444 438.35990  —0.69 0.15 -0.15 —0.68
3 0 1 1 -1 0 -1 056.454 411.80661 0.99 0.26 —0.25 1.04
3 0 0 0 1 -1 1 056.555 365.24219 1.19 0.21 -0.19 1.40
3 0 10 1 -2 1 057.455 193.55971 1.30 037 -0.17 2.91
3 0 0 0 1 0 2 065.545 27.431826 —-0.05 —0.21 0.01 —1.68
3 0 0 O 1 0 1 065.555  27.321582 0.89 3.97 —=0.11 32.39
3 0 0 O 1 0 0 065.565 27.212221 0.14 0.62 —0.02 5.09
3 0 -1 0 1 2 1 073.655 14.698136  —0.02 0.07 0.00 0.56
3 0 10 1 0 1 075455 13.718786  —0.11 0.33 0.01 2.66
3 0 0 0 3 0 3 085.555 9.1071941  —0.08 0.11 0.01 0.88
3 0 0 O 3 0 2 085.565 9.0950103  —0.05 0.07 0.01 0.55
2 1 -1 0 =2 0 -1 135.645 1.1196992  —0.44 025 -0.25 —0.44
2 1 -1 0 =2 0 -2 135.655 1.1195149  —2.31 1.32 -132 -231
2 1 10 -2 -2 =2 137.455 1.1134606  —0.44 025 -0.25 —0.44
2 1 0 0 =2 0 -1 145.545 1.0759762 —2.14 1.23 —-1.23 —2.14
2 1 0 0 -2 0 -2 145.555 1.0758059 —11.36 6.52 —6.52 —11.36
2 1 -1 0 0 0 0 155.655 1.0347187 0.84 —0.48 0.48 0.84
2 1 0 0 -2 2 =2 163.555 1.0027454  —4.76 273 =273 —4.76
2 1 0 0 0 0 0  165.555 0.9972696 1427  -8.19 8.19 14.27
2 1 0 O 0 0 -1 165.565 0.9971233 1.93 -1.11 1.11 1.93
2 1 1 0 0 0 0 175.455  0.9624365 0.76 —0.43 0.43 0.76

Rate of secular polar motion (pas/y) due to the zero frequency tide
4 0 0 0 0 0 0  555.555 —3.80 —4.31

5.4.5 Motion of the CIP in the GCRS

Developments of the coordinates X and Y of the CIP in the GCRS, valid at the microarcsecond
level, based on the IERS 1996 model for precession, nutation and pole offset at J2000.0 with respect
to the pole of the GCRS, have been provided by Capitaine et al. (2000). New developments of X
and Y based on the TAU 2000A or TAU 2000B model (see the following section for more details) for
precession-nutation and on their corresponding pole offset at J2000.0 with respect to the pole of the
GCRS have been computed at the same accuracy (Capitaine et al., 2003a). These developments
have the following form:

X = —0.01661699” + 2004.19174288"t — 0.42721905" >
—0.19862054"3 — 0.00004605”t* 4+ 0.00000598" ¢
+ >, [(as,0)i SIN(ARGUMENT) + (ac,0); COS(ARGUMENT )]
+ >, [(as,1)it sin(ARGUMENT) + (ac,1)it COS(ARGUMENT )]
+ 3" 1(as,2)it? Sin(ARGUMENT) + (ac,2);t? cos(ARGUMENT)]
+ SN



Y = —0.00695078" — 0.02538199"t — 22.40725099"t2
+0.00184228"3 + 0.00111306"t* + 0.00000099” ¢
+ >, [(be,0)i coS(ARGUMENT) + (bs,0); SiIn(ARGUMENT)]
+ >, [(be,1)it cos(ARGUMENT) + (bg,1); tsin(ARGUMENT)]
+ 37 1(be,2)it? cos(ARGUMENT) + (b 2);t? sin(ARGUMENT)]
+ SN

the parameter ¢ being given by expression (2) and ARGUMENT being a function of the fundamental
arguments of the nutation theory whose expressions are given by (41) for the lunisolar ones and
(42) for the planetary ones.

These series are available electronically on the IERS Conventions Center website (Tables 5.2a
and 5.2b) at <?>. tab5.2a.txt for the X coordinate and at tab5.2b.txt for the Y coordinate.
An extract from Tables 5.2a and 5.2b for the largest non-polynomial terms in X and Y is given
hereafter.

Extract from Tables 5.2a and 5.2b (available at < 2> ) for the largest non-polynomial terms in the
development (15) for X (¢) (top part) and (16) for Y (¢) (bottom part) compatible with TAU 2000A
precession-nutation model (unit pas). The expressions for the fundamental arguments appearing in
columns 4 to 17 are given by (41) and (42).

i (as,0)i (aco)i I ! F D Q Lye Lve LeE Lyma Ly Lsa Lu Lne pa
1 —6844318.44 1328.67 0 O 0 0 1 0 0 0 0 0 0 0 0 0
2  —523908.04 —544.76 0 O 2 =2 2 0 0 0 0 0 0 0 0 0
3 —90552.22 111.23 0 O 2 0o 2 0 0 0 0 0 0 0 0 0
4 82168.76 —2764 0 O 0 0o 2 0 0 0 0 0 0 0 0 0
5 58707.02 470.05 0 1 0 0O 0 O 0 0 0 0 0 0 0 0
7 (as,1)i (aci)i o ! ' 'F D Q Lye Lve Le Lya Ly Lsa Lu Lne pa
1307 —3328.48 205833.15 0 O 0 0 1 0 0 0 0 0 0 0 0 0
1308 197.53 12814.01 0 O 2 =2 2 0 0 0 0 0 0 0 0 0
1309 41.19 218791 0 O 2 0o 2 0 0 0 0 0 0 0 0 0
{ (bs,0)i (beo)i 1 ! ' F D Q Lye Lve Le Lyva Ly Lsa Lu Lne pa
1 1538.18 9205236.26 0 O 0 0 1 0 0 0 0 0 0 0 0 0
2 —458.66 573033.42 0 O 2 =2 2 0 0 0 0 0 0 0 0 0
3 137.41 97846.69 0 O 2 0o 2 0 0 0 0 0 0 0 0 0
4 —29.056 —89618.24 0 O 0 0o 2 0 0 0 0 0 0 0 0 0
5 —17.40 22438.42 0 1 2 =2 2 0 0 0 0 0 0 0 0 0
i (bs,1)i (ben): L I F D Q Lme Lve Le Lva Ly Lsa Lu Lne pa
963 153041.82 878.89 0 O 0 0 1 0 0 0 0 0 0 0 0 0
964 11714.49 —289.32 0 O 2 =2 2 0 0 0 0 0 0 0 0 0
965 2024.68 -50.99 0 O 2 0o 2 0 0 0 0 0 0 0 0 0

The numerical values of the coefficients of the polynomial part of X and Y are derived from the
development as a function of time of the precession in longitude and obliquity and pole offset at
J2000.0 and the amplitudes (as;)i, (@c;j)i, (be,j)ir(bs,j)i for j = 0,1,2, ... are derived from the
amplitudes of the precession and nutation series. The amplitudes (as,0)i, (be,0): of the sine and
cosine terms in X and Y respectively are equal to the amplitudes A; x sineg and B; of the series
for nutation in longitude X siney and obliquity, except for a few terms in each coordinate X and
Y which contain a contribution from crossed-nutation effects. The coordinates X and Y contain
Poisson terms in tsin, ¢ cos, ¢2sin, t2 cos, ... which originate from crossed terms between precession
and nutation.

2ftp://tai.bipm.org/iers/conv2003/chapter5/ or ftp://maia.usno.navy.mil/conv2000/chapter5/



The contributions (in pas) to expressions (15) and (16) from the frame biases are

dx
ay

—16617.0 — 1.6 £2 + 0.7 cos <,

—6819.2 —141.9 t 4+ 0.5 sin (2, (17)

the first term in each coordinate being the contribution from the celestial pole offset at J2000.0 and
the following ones from the equinox offset at J2000.0 also called “frame bias in right ascension.”

The celestial coordinates of the CIP, X and Y, can also be obtained at each time ¢ as a function
of the precession and nutation quantities provided by the TAU 2000 precession-nutation model.
The developments to be used for the precession quantities and for the nutation angles referred
to the ecliptic of date are described in the following section and a subroutine is available for the
computation.

The relationships between the coordinates X and Y and the precession-nutation quantities are
(Capitaine, 1990): B B
X = X+&—dag?,

Y = Y+4mn+da X, (18)

where &y and 79 are the celestial pole offsets at the basic epoch J2000.0 and dag the right ascension
of the mean equinox of J2000.0 in the CRS. (See the numbers provided below in (19) and (28) for
these quantities.)

The mean equinox of J2000.0 to be considered is not the “rotational dynamical mean equinox
of J2000.0” as used in the past, but the “inertial dynamical mean equinox of J2000.0” to which
the recent numerical or analytical solutions refer. The latter is associated with the ecliptic in the
inertial sense, which is the plane perpendicular to the vector angular momentum of the orbital
motion of the Earth-Moon barycenter as computed from the velocity of the barycenter relative to
an inertial frame. The rotational equinox is associated with the ecliptic in the rotational sense,
which is perpendicular to the vector angular momentum computed from the velocity referred to
the rotating orbital plane of the Earth-Moon barycenter. (The difference between the two angular
momenta is the angular momentum associated with the rotation of the orbital plane.) See Standish
(1981) for more details. The numerical value for dag as derived from Chapront et al. (2002) to be
used in expression (18) is

dag = (—0.01460 4= 0.00050)". (19)
Quantities X and Y are given by:

sin w sin 1,
= —sinegcosw + cos €q sinw cos P

N
\

(20)

where € (= 84381.448") is the obliquity of the ecliptic at J2000.0, w is the inclination of the true
equator of date on the fixed ecliptic of epoch and 1 is the longitude, on the ecliptic of epoch, of
the node of the true equator of date on the fixed ecliptic of epoch; these quantities are such that

w=wa + Aei; =1+ Ay, (21)

where ¢4 and w4 are the precession quantities in longitude and obliquity (Lieske et al., 1977)
referred to the ecliptic of epoch and Ay, Ae; are the nutation angles in longitude and obliquity
referred to the ecliptic of epoch. (See the numerical developments provided for the precession
quantities in (30) and (31).) Ay, Ae; can be obtained from the nutation angles A, Ae in
longitude and obliquity referred to the ecliptic of date. The following formulation from Aoki and
Kinoshita (1983) has been verified to provide an accuracy better than one microarcsecond after
one century:

AYysinwyg = Atsinegcosya — Aesinya,

Ae; = Atsineysinya + Aecosxa, (22)

w4 and €4 being the precession quantities in obliquity referred to the ecliptic of epoch and the
ecliptic of date respectively and x 4 the planetary precession along the equator (Lieske et al., 1977).



As VLBI observations have shown that there are deficiencies in the IAU 2000A precession-nutation
model of the order of 0.2 mas (Mathews et al., 2002), the IERS will continue to publish observed
estimates of the corrections to the TAU 2000 precession-nutation model. The observed differences
with respect to the conventional celestial pole position defined by the models are monitored and
reported by the IERS as “celestial pole offsets.” Such time dependent offsets from the direction of
the pole of the GCRS must be provided as corrections § X and Y to the X and Y coordinates.
These corrections can be related to the current celestial pole offsets 1 and de using the relationship
(20) between X and Y and the precession-nutation quantities and (22) for the transformation
from ecliptic of date to ecliptic of epoch. The relationship can be written with one microarcsecond
accuracy for one century, for values of J1» and de lower than 1 mas:

0X = OYsines + (Yacoseg — xa)de,

0Y = de— (Yacosey — xa)dhsineq. (23)

These observed offsets include the contribution of the Free Core Nutation (FCN) described in
sub-section 5.5.1 on the TAU 2000 precession-nutation model. Using these offsets, the corrected
celestial position of the CIP is given by

X = X (IAU 2000) + 6X, Y = Y/(IAU 2000) + §Y. (24)

This is practically equivalent to replacing the transformation matrix ) with the rotation

~ 1 0 X
Q= 0 1 Y |Quau (25)
—6X oY 1

where Qrau represents the Q(t) matrix based on the TAU 2000 precession-nutation model.

5.4.6 Position of the CIO in the GCRS

The numerical development of s compatible with the TAU 2000A precession-nutation model as well
as the corresponding celestial offset at J2000.0 has been derived in a way similar to that based on
the IERS Conventions 1996 (Capitaine et al., 2000). It results from the expression for s (8) using
the developments of X and Y as functions of time given by (15) and (16) (Capitaine et al., 2003a).
The numerical development is provided for the quantity s + XY/2, which requires fewer terms to
reach the same accuracy than a direct development for s.

The constant term for s, which was previously chosen so that s(J/2000.0) = 0, has now been fitted
(Capitaine et al., 2003b) so as to ensure continuity of UT1 at the date of change (1 January 2003)
consistent with the Earth Rotation Angle (ERA) relationship and the current VLBI procedure for
estimating UT1 (see (36)).

The complete series for s + XY /2 with all terms larger than 0.1 pas is available electronically on
the IERS Conventions Center website < !> at tab5.2c.txt and the terms larger than 0.5 pas
over 25 years in the development of s are provided in Table 5.2c with microarcsecond accuracy.

5.5 IAU 2000A and IAU 2000B Precession-Nutation Model

5.5.1 Description of the Model

The TAU 2000A precession-nutation model has been adopted by the TAU (Resolution B1.6) to
replace the TAU 1976 precession model (Lieske et al., 1977) and the TAU 1980 theory of nutation
(Wahr, 1981; Seidelmann, 1982). See Dehant et al. (1999) for more details. This model, developed
by Mathews et al. (2002), is based on the solution of the linearized dynamical equation of the
wobble-nutation problem and makes use of estimated values of seven of the parameters appearing
in the theory, obtained from a least-squares fit of the theory to an up-to-date precession-nutation
VLBI data set (Herring et al., 2002). The nutation series relies on the Souchay et al. (1999) Rigid
Earth nutation series, rescaled by 1.000012249 to account for the change in the dynamical ellipticity
of the Earth implied by the observed correction to the lunisolar precession of the equator. The



Table 5.2¢  Development of s(t) compatible with IAU 2000A precession-nutation model:
all terms exceeding 0.5 pas during the interval 1975-2025 (unit pas).

s(t) = —XY/2+ 94+ 3808.35t — 119.94¢ — 72574.09t> + >, Cj sin
+1.71t sin Q + 3.57¢ cos 202 + 743.53t% sin Q0 + 56.91¢? sin(2F — 2D + 2Q)
+9.84t%sin(2F + 2Q) — 8.85¢t2 sin 212

Argument oy Amplitude Cj
Q —2640.73
2Q) —63.53
2F — 2D + 39 —11.75
2F — 2D +Q —11.21
2F — 2D + 29 +4.57
2F + 39 —2.02
2F +Q —1.98
30 +1.72
'+9Q +1.41

' —Q +1.26
l+Q +0.63
[—Q +0.63

nonrigid Earth transformation is the MHB2000 model of Mathews et al. (2002) which improves
the TAU 1980 theory of nutation by taking into account the effect of mantle anelasticity, ocean
tides, electromagnetic couplings produced between the fluid outer core and the mantle as well as
between the solid inner core and fluid outer core (Buffett et al., 2002) and the consideration of
nonlinear terms which have hitherto been ignored in this type of formulation.

The resulting nutation series includes 678 lunisolar terms and 687 planetary terms which are
expressed as “in-phase” and “out-of-phase” components with their time variations (see expression
(29)). It provides the direction of the celestial pole in the GCRS with an accuracy of 0.2 mas.
It includes the geodesic nutation contributions to the annual, semiannual and 18.6-year terms to
be consistent with including the geodesic precession p, in the precession model and so that the
BCRS and GCRS are without any time-dependent rotation. The TAU 1976 precession model uses
pg = 1.92"/c and the theoretical geodesic nutation contribution (Fukushima, 1991) used in the
MHB model (Mathews et al., 2002) is, in pas, for the nutations in longitude Ay, and obliquity
AV

Aty = —153 sinl’ —2 sin2l’ + 3 sinQ,

Aeg = 1 cosl, (26)

where [’ is the mean anomaly of the Sun and © the longitude of the ascending node of the Moon.
On the other hand, the FCN, being a free motion which cannot be predicted rigorously, is not
considered a part of the IAU 2000A model.

The TAU 2000 nutation series is associated with improved numerical values for the precession rate
of the equator in longitude and obliquity, which correspond to the following correction to the IAU
1976 precession:

Sha = (—0.29965 % 0.00040)" /c,

dwa = (—0.02524 =+ 0.00010)" /c, (27)

as well as with the following offset (originally provided as frame bias in dwp;qs and depiqs) of the
direction of the CIP at J2000.0 from the direction of the pole of the GCRS:

&% = (—0.0166170 4+ 0.0000100)",

o (—0.0068192 + 0.0000100)". (28)

The TAU 2000 nutation model is given by a series for nutation in longitude A and obliquity Ae,
referred to the ecliptic of date, with ¢ measured in Julian centuries from epoch J2000.0:
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AY = N (A + Alt) sin(ARGUMENT) + (A7 4+ A't) cos(ARGUMENT), )
Ae = SN (B; + Bit) cos(ARGUMENT) + (B! + B}"t) sin(ARGUMENT).

More details about the coefficients and arguments of these series (see extract of the Tables 5.3a
and 5.3b below) will be given in section 5.8.

These series are available electronically on the IERS Conventions Center website < !>, for the
lunisolar and planetary components respectively at tab5.3a.txt and tab5.3b.txt.

Extract from Tables 5.3a (lunisolar nutations, top part) and 5.3b (planetary nutations, bottom part)
(available at < '>) providing the largest components for the “in-phase” and “out-of-phase” terms
in longitude and obliquity. Units are mas and mas/c for the coefficients and their time variations
respectively. Periods are in days.

I FDSQ Period A; Al B; Bl A7 Al B B

00001 -6798.383 -17206.4161 -17.4666 9205.2331 0.9086 3.3386 0.0029 1.5377 0.0002
002-22 182.621 -1317.0906 -0.1675 573.0336 -0.3015 -1.3696 0.0012 -0.4587 -0.0003
00202 13.661  -227.6413 -0.0234  97.8459 -0.0485 0.2796 0.0002 0.1374 -0.0001
00002 -3399.192 207.4554  0.0207 -89.7492 0.0470 -0.0698 0.0000 -0.0291 0.0000
01000 365260 147.5877 -0.3633 7.3871 -0.0184 1.1817 -0.0015 -0.1924 0.0005
012-22 121.749 -51.6821  0.1226 22.4386 -0.0677 -0.0524 0.0002 -0.0174 0.0000
10000 27.555 71.1159  0.0073 -0.6750 0.0000 -0.0872 0.0000 0.0358 0.0000
00201 13.633 -38.7298 -0.0367 20.0728 0.0018 0.0380 0.0001 0.0318 0.0000
10202 9.133 -30.1461 -0.0036 12.9025 -0.0063 0.0816 0.0000 0.0367 0.0000
0-1 2-22 365.225 21.5829 -0.0494 -9.5929 0.0299 0.0111 0.0000 0.0132 -0.0001
Period Longitude Obliquity

I'FDSQ LyeLye Lg Lyia Ly Lsa Lu Le pa Ay AY B B;

001-11 0 0 -1 0-2 5 0 00 311921.26 -0.3084 0.5123 0.2735 0.1647
0000O0 0 0 0 0-2 5 0 01 311927.52 -0.1444 0.2409 -0.1286 -0.0771
00000O0 0 -3 5 0O 0 0 0 0 2 2957.35 -0.2150 0.0000 0.0000 0.0932
001-11 0 -8 12 0O 0 0 0 00 -88082.01 0.1200 0.0598 0.0319 -0.0641
000O00O0 0 0 O 0O 2 0 0 0 2 2165.30 -0.1166 0.0000 0.0000 0.0505
000O00O0 0O 0 4 -8 3 0 0 0 0 -651391.30 -0.0462 0.1604 0.0000 0.0000
0000O0 0o 1 -1 0O 0 0 0 0O 583.92 0.1485 0.0000 0.0000 0.0000
0000O0 0 0 8 -16 4 5 0 0 0 34075700.82 0.1440 0.0000 0.0000 0.0000
000O00O0 0 0 1 0-1 0 0 00 398.88 -0.1223 -0.0026 0.0000 0.0000
00001 0 0 -1 20 0 0 00 37883.60 -0.0460 -0.0435 -0.0232 0.0246

The TAU2000A.f subroutine, provided by T. Herring, is available electronically on the ITERS
Conventions Center website at < 2>. It produces the quantities to implement the IAU 2000A
precession-nutation model based on the MHB 2000 model: nutation in longitude and obliquity,
plus the contribution of the corrections to the IAU 1976 precession rates, plus the frame bias
dpies and depiqs in longitude and obliquity. The “total nutation” includes all components with
the exception of the free core nutation (FCN). The software can also be used to model the expected
FCN based on the most recent astronomical observations.

As recommended by Resolution B1.6, an abridged model, designated IAU 2000B, is available for
those who need a model only at the 1 mas level. Such a model has been developed by McCarthy
and Luzum (2003). It includes fewer than 80 lunisolar terms plus a bias to account for the effect of
the planetary terms in the time period under consideration. It provides the celestial pole motion
with an accuracy that does not result in a difference greater than 1 mas with respect to that
of the TAU 2000A model during the period 1995-2050. The IAU2000B.f subroutine is available
electronically on the IERS Conventions Center website at < 2>.
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5.5.2 Precession Developments compatible with the TAU2000 Model

The numerical values for the precession quantities compatible with the TAU 2000 precession-
nutation model can be provided by using the developments (30) of Lieske et al. (1977) to which
the estimated corrections (27) 614 and dwy4 to the IAU 1976 precession have to be added.

The expressions of Lieske et al. (1977) are

Ya = 5038.7784"t — 1.07259"t2 — 0.001147"¢3,
wa = €+ 0.05127"¢2 — 0.007726"13, (30)
€a = € —46.8150"t — 0.00059"t> + 0.001813"¢3,
xa = 10.5526"t —2.38064"t> —0.001125"¢3
and
Ca = 2306.2181"t + 0.30188"¢> 4 0.017998"¢3,
04 = 2004.3109"t — 0.42665"t* — 0.041833"3, (31)

za = 2306.2181"t + 1.09468"t% + 0.018203"¢3,
with €y = 84381.448".

Due to their theoretical bases, the original development of the precession quantities as function of
time can be considered as being expressed in TDB.

The expressions compatible with the TAU 2000A precession and nutation are:

ha = 5038.47875"t — 1.07259"t? — 0.001147"t3,

wa = € —0.02524"t +0.05127"t? — 0.007726"t3, (32)
€A = €y —46.84024"t — 0.00059”¢% + 0.001813"¢3,

xa = 10.5526"t —2.38064"t> — 0.001125"¢

and the following series has been developed (Capitaine et al., 2003c) in order to match the 4-
rotation series for precession Ry (—¢€g) - R3(¢a)- Ri(wa)- Rs(—xa), called the “canonical 4-rotation
method,” to sub-microarcsecond accuracy over 4 centuries:

Ca = 2.5976176" + 2306.0809506"¢ + 0.3019015"¢> + 0.0179663"¢3
—0.0000327"t4 — 0.0000002" £,

04 = 2004.1917476"t — 0.4269353"¢2 — 0.0418251"¢
—0.0000601”t4 — 0.0000001"¢%,

za = —2.5976176" + 2306.0803226"¢ + 1.0947790"¢2 + 0.0182273"¢3
+0.0000470"¢* — 0.0000003"¢5.

Note that the new expression for the quantities (4 and z4 include a constant term (with opposite
signs) which originates from the ratio between the precession rate in w4 and in ¥4 sin €.

In practice, TT is used in the above expressions in place of TDB. The largest term in the difference
TDB—TT being 1.7 ms X sinl’, the resulting error in the precession quantity 4 is periodic,
with an annual period and an amplitude of 2.7” x 10~?, which is significantly under the required
microarcsecond accuracy.

5.6 Procedure to be used for the Transformation consistent with TAU 2000
Resolutions

There are several ways to implement the IAU 2000 precession-nutation model, and the precession
developments to be used should be consistent with the procedure being used. The subroutines
available for the different procedures are described below.
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Using the new paradigm, the complete procedure to transform from the GCRS to the ITRS com-
patible with the TAU 2000A precession-nutation is based on the expressions provided by (15) and
(16) and Tables 5.2 for the positions of the CIP and the CIO in the GCRS. These already contain
the proper expressions for the new precession-nutation model and the frame biases. Another pro-
cedure can also be used for the computation of the coordinates X and Y of the CIP in the GCRS
using expressions (18) to (22). This must be based on the MHB 2000 nutation series, on offsets at
J2000.0 as well as on precession quantities ¥ 4,wa, €4, x4, taking into account the corrections to
the TAU 1976 precession rates. (See expressions (32).)

In support of the classical paradigm, the TAU2000A subroutine provides the components of the
precession-nutation model including the contributions of the correction to the IAU 1976 precession
rates for Ca,0z,z4 (see expressions (31)). Expressions (33) give the same angles but taking into
account the TAU 2000 corrections.

The recommended option for implementing the TAU 2000A /B model using the classical transfor-
mation between the TRS and the GCRS is to follow a rigorous procedure described by Wallace (in
Capitaine et al., 2002). This procedure is composed of the classical nutation matrix using the MHB
2000 series, the precession matrix including four rotations (Rq(—¢o) - R3(0a) - Ri(wa) - R3(—x4))
using the updated developments (32) for these quantities and a separate rotation matrix for the
frame bias.

In the case when one elects to continue using the classical expressions based on the IAU 1976
precession model and TAU 1980 theory of nutation, one should proceed as in the past as described
in the TERS Conventions 1996 (McCarthy, 1996) and then apply the corrections to the model
provided by the appropriate IAU 2000A /B software.

5.7 Expression of Greenwich Sidereal Time referred to the CIO

Greenwich Sidereal Time (GST), which refers to the equinox, is related to the “Earth Rotation
Angle” ERA, denoted by 6, that refers to the Celestial Intermediate Origin (CIO), by the following
relationship (Aoki and Kinoshita, 1983; Capitaine and Gontier, 1993) at the microarcsecond level:

t e
GSTsz0+9—|—/ (a4 + Athy) cos(wa + Aer)dt — xa + A coses — Ahy coswa, (34)

to

Ay, Aeq, given by (22), being the nutation angles in longitude and obliquity referred to the
ecliptic of epoch and x4, whose development is given in (32), the planetary precession along the
equator (i.e. the RA component of the precession of the ecliptic).

This can be written as:

GST = ¢(UT1) — EO, (35)

where EO is “the equation of the origins” (according to the recommendations of the IAU WG on
“Nomenclature for fundamental astronomy”), defined by:

t
EO:—dTo—/ (VA + Athy) cos(wa — Aer)dt + xa — Ahcoseaq + Ay coswa,  (36)

to

providing the CIO right ascension of the equinox along the moving equator, which accounts for
the accumulated precession and nutation in right ascension from J2000.0 to the epoch t, and dTy
is a constant term to be fitted in order to ensure continuity in UT1 at the date of change. The
numerical expression consistent with the IAU 2000A precession-nutation model has been obtained
using computations similar to those performed for s and following a procedure, which is described
below, to ensure consistency at the microarcsecond level among the transformations as well as
continuity in UT1 at the date of change (Capitaine et al., 2003b).
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Table 5.4 Development of EO compatible with TAU 2000A precession-nutation model:
all terms exceeding 0.5 pas during the interval 1975-2025 (unit pas).

EO = —0.014506" — 4612.15739966"t — 1.39667721"¢>
+0.00009344"t3 — Arpcoseq — >k O sinay

Argument oy Amplitude C},
Q +2640.96
2Q +63.52
2F — 2D + 3Q +11.75
2F —2D +Q +11.21
2F — 2D + 29) —4.55
2F + 39 +2.02
2F +Q +1.98
3Q —1.72
U'+Q —1.41
' —Q —1.26
I+ —0.63
[—Q —0.63

The series providing the expression for Greenwich Sidereal Time based on the IAU 2000A precession-
nutation model is available on the IERS Conventions Center website < '> at tab5.4.txt, and
the terms larger than 0.5 pas over 25 years in the development of EO are provided in Table 5.4
with microarcsecond accuracy.

The C}, coefficients are similar to the C}, coefficients appearing in Table 5.2¢ providing the develop-
ment for s and are equal to these coefficients up to 1 pas. The last term of EO, i.e. =), C} sin oy, is
the complementary term to be subtracted from the classical “equation of the equinoxes,” A1) coseq,
to provide the relationship between GST and # with microarcsecond accuracy. This replaces the
two complementary terms provided in the IERS Conventions 1996. A secular term similar to that
appearing in the quantity s is included in expression (36). This expression for GST used in the
classical transformation based on the IAU 2000A precession-nutation ensures consistency at the
microarcsecond level after one century among transformations using expressions (14) for 6, (15)
and (16) for the celestial coordinates of the CIP and Table 5.2¢ for s. The numerical values for the
constant term d7p in GST, which ensures continuity in UT1 at the date of change (1 January 2003),
and for the corresponding constant term in s have been found to be

dly = 414506 pas,
so = + 94 pas. (37)
The change in the polynomial part of GST due to the correction in the precession rates (27)
corresponds to a change dGMST (see also Williams, 1994) in the current relationship between
GMST and UT1 (Aoki et al., 1982). Its numerical expression derived from expressions (35) for
GST, (13) for §(UT1), and the polynomial part of EO in Table 5.4, minus the expression for
GMST19g2(UT1), can be written in microarcseconds as

dGMST = 14506 — 274950.12¢ 4 117.21t% — 0.44 1> + 18.82¢". (38)

The new expression for GST clearly distinguishes between 6, which is expressed as a function of
UT1, and the EO (i.e. mainly the accumulated precession-nutation in right ascension), which is
expressed in TDB (or, in practice, TT), in contrast to the GMST9g2(UT1) expression, which used
only UT1. This gives rise to an additional difference in dGMST of (TT—UT1) multiplied by the
speed of precession in right ascension. Using TT—TATI = 32.184 s, this is: [47+1.5(TAI-UT1)] pas,
where TAI-UT1 is in seconds. On 1 January 2003, this difference is about 94 pas (see Gontier in
Capitaine et al., 2002), using the value of 32.3s for TAI-UT1. This contribution for the effect of
time scales is included in the values for d7T and sg.
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5.8 The Fundamental Arguments of Nutation Theory

5.8.1 The Multipliers of the Fundamental Arguments of Nutation Theory

Each of the lunisolar terms in the nutation series is characterized by a set of five integers N;
which determines the ARGUMENT for the term as a linear combination of the five Fundamental
Arguments F};, namely the Delaunay variables (¢, ¢, F, D,Q): ARGUMENT = E?:1 N, F;, where
the values (N1, -+, N5) of the multipliers characterize the term. The Fj; are functions of time, and
the angular frequency of the nutation described by the term is given by

w = d(ARGUMENT)//dt. (39)

The frequency thus defined is positive for most terms, and negative for some. Planetary nutation
terms differ from the above only in that ARGUMENT = Z;il N}F}, Fs to Fi3, as noted in
Table 5.3, are the mean longitudes of the planets Mercury to Neptune including the Earth ({pze,
e, lg, Lviay Liu, Usa, lur, Ine) and Fiy is the general precession in longitude p,.

Over time scales involved in nutation studies, the frequency w is effectively time-independent, and
one may write, for the kth term in the nutation series,

ARGUMENT = wyt + ay. (40)

Different tables of nutations in longitude and obliquity do not necessarily assign the same set of
multipliers N; to a particular term in the nutation series. The differences in the assignments arises
from the fact that the replacement (Nj—1,14) — —(Nj=1,14) accompanied by reversal of the sign of
the coefficient of sSin(ARGUMENT) in the series for Ay and Ae leaves these series unchanged.

5.8.2 Development of the Arguments of Lunisolar Nutation

The expressions for the fundamental arguments of nutation are given by the following developments
where ¢ is measured in Julian centuries of TDB (Simon et al., 1994: Tables 3.4 (b.3) and 3.5 (b))
based on IERS 1992 constants and Williams et al. (1991) for precession.

Fy =1 = Mean Anomaly of the Moon
= 134.96340251° + 1717915923.2178"t 4 31.8792"¢>
+0.051635"t3 — 0.00024470" 4,

Fy =1' = Mean Anomaly of the Sun
= 357.52910918° + 129596581.0481"t — 0.5532"¢2
10.000136"¢3 — 0.00001149" ¢4,
Fs=F=L-%Q
= 93.27209062° + 1739527262.8478"t — 12.7512"¢> (41)
—0.001037"¢% + 0.00000417"¢4,

F, =D = Mean Elongation of the Moon from the Sun
= 297.85019547° + 1602961601.2090"t — 6.3706"t>
+0.006593"3 — 0.00003169”¢*,
F5 =Q = Mean Longitude of the Ascending Node of the Moon
= 125.04455501° — 6962890.5431"¢ + 7.4722"2
+0.007702"t3 — 0.00005939" 4

where L is the Mean Longitude of the Moon.
5.8.3 Development of the Arguments for the Planetary Nutation

Note that in the MHB 2000 code (IAU2000A.f) simplified expressions are used for the planetary
nutation. The maximum difference in the nutation amplitudes is less than 0.1uas.
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The mean longitudes of the planets used in the arguments for the planetary nutations are essentially I
those provided by Souchay et al. (1999), based on theories and constants of VSOP82 (Bretagnon,
1982) and ELP 2000 (Chapront-Touzé and Chapront, 1983) and developments of Simon et al.
(1994). Their developments are given below in radians with ¢ in Julian centuries.

The general precession, Fy4, is from Kinoshita and Souchay (1990). I

In the original expressions, ¢ is measured in TDB. However, TT can be used in place of TDB as the
difference due to TDB—TT is 0.9 mas x sinl’ for the largest effect in the nutation arguments, which
produces a negligible difference (less than 10~2?pas with a period of one year) in the corresponding
amplitudes of nutation.

Fs = lye = 4.402608842 + 2608.7903141574 x ¢,
Fr = lye = 3.176146697 + 1021.3285546211 x t,
Fys = g = 1.753470314 + 628.3075849991 x ¢,
Fy = lye = 6.203480913 + 334.0612426700 x ¢,
Fio = lju = 0.599546497 4 52.9690962641 x ¢, (42)
Fi1 = lsa = 0.874016757 4 21.3299104960 x ¢,
o = ly, = 54812938724 7.4781598567 x t,
Fi3 = Iye = 5.311886287+ 3.8133035638 x t,
Fiy = p. = 0.02438175 x ¢ + 0.00000538691 x 2. I

5.9 Prograde and Retrograde Nutation Amplitudes

The quantities At)(t) sin €9 and Ae(t) may be viewed as the components of a moving two-dimensional
vector in the mean equatorial frame, with the positive X and Y axes pointing along the directions
of increasing At and Ae, respectively. The purely periodic parts of Ay (t)siney and Ae(t) for a
term of frequency wy are made up of in-phase and out-of-phase parts

(A (t)siney, AeP(t)) = (AP sin eg sin(wyt + ax), Ael? cos(wit + ax)),

(43)
(AyY°P(t) sineg, Ae®P(t)) = (AY” sineg cos(wit + o), Ae;? sin(wyt + o)),

respectively. Each of these vectors may be decomposed into two uniformly rotating vectors, one
constituting a prograde circular nutation (rotating in the same sense as from the positive X axis
towards the positive Y axis) and the other a retrograde one rotating in the opposite sense. The
decomposition is facilitated by factoring out the sign ¢ of wy from the argument, g, being such
that

Qrwi = |wk]- (44)

and writing
wit + ar = ¢ (Jwk|t + grar) = qeXxrs (45)

with xj increasing linearly with time. The pair of vectors above then becomes

(AP () sineo, Ae(t)) = (qr Ay sin e sin X, A6l cos x),

(46)
AYP(t)sineg, Ae’P(t)) = (AP sinegcos xi, qrle,? sinxy).
k k

Because xj increases linearly with time, the mutually orthogonal unit vectors (sin xx, — cos xx)
and (cos X, sin xj) rotate in a prograde sense and the vectors obtained from these by the replace-
ment x, — —Xk, namely (— sin xx, — cos xx) and (cos xx, — sin xx) are in retrograde rotation. On
resolving the in-phase and out-of-phase vectors in terms of these, one obtains

(A () sineg, AeP(t)) = AL (sin x, —cosxg) + Ap" P(—sinxp, —cosxk),

(47)
(Ay°P(t) sin ey, AeP(t)) = A} P (cos xk, sinxg) + A;ﬂ P(cos xk, —sinxk),
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where

APTe = % (qkszp sineg — Aezp),
Azet L —% (qkszp sin eg + Aezp), (48)
AP = % (AP sineg + qrAe)?),
AP = L (AYPsineg — grAe)?).
The expressions providing the corresponding nutation in longitude and in obliquity from circular
terms are
Aw? _ sﬂg(A?”p—Aﬁ”ﬁ,
AYPP = L (AProoP | gretory
et w
€ = - (Ak + A, ) ,
A€Z:D = q (Aim op Azet Op) )

The contribution of the k-term of the nutation to the position of the Celestial Intermediate Pole
(CIP) in the mean equatorial frame is thus given by the complex coordinate

Ap(t)sineg + iAe(t) = —i (AL Xk 4 Apetemixe) (50)

where A} and Ajet are the amplitudes of the prograde and retrograde components, respectively,
and are given by 4 4
Azro _ Azro ip + Z-Azro ozr)7 Azet _ Azet ip + iA;et op. (51)

The decomposition into prograde and retrograde components is important for studying the role of
resonance in nutation because any resonance (especially in the case of the nonrigid Earth) affects
AV and A} unequally.

In the literature (Wahr, 1981) one finds an alternative notation, frequently followed in analytic
formulations of nutation theory, that is:

Ae(t) + iAY(t)sineg = —i (AY70 “e™Xr 4 At Texn) (52)

with

pro — __ Aproip : ApTO Op ret — __ qretip . rret op
AY = A} — A7 P, AT = AT — AP (53)

Further detail concerning this topic can be found in Defraigne et al., (1995) and Bizouard et al.
(1998).

5.10 Procedures and IERS Routines for Transformations from ITRS to
GCRS

Fortran routines that implement the TAU 2000 transformations are provided on the IERS Conven-
tions web page, which is at < 2>.

The following routines are provided:

BPN2000 CIO-based intermediate-to-celestial matrix
CBPN2000 equinox-based true-to-celestial matrix
EE2000 equation of the equinoxes (EE)
EECT2000 EE complementary terms

ERA2000 Earth Rotation Angle

GMST2000 Greenwich Mean Sidereal Time
GST2000 Greenwich (apparent) Sidereal Time
NU2000A nutation, IAU 2000A

NU2000B nutation, IAU 2000B

POM2000 form polar-motion matrix

SP2000 the quantity s’

T2C2000 form terrestrial to celestial matrix
XYS2000A X.,Y,s
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The above routines are to a large extent self-contained, but in some cases use simple utility routines
from the TAU Standards Of Fundamental Astronomy software collection. This may be found at
<3>. The SOFA collection includes its own implementations of the ITAU 2000 models, together
with tools to facilitate their rigorous use. Two equivalent ways to implement the TAU Resolutions
in the transformation from ITRS to GCRS provided by expression (1) can be used, namely (a) the
new transformation based on the Celestial Intermediate Origin and the Earth Rotation Angle and
(b) the classical transformation based on the equinox and Greenwich Sidereal Time. They are
called respectively “CIO-based” and “equinox-based” transformations in the following.

For both transformations, the procedure is to form the various components of expression (1), or
their classical counterparts, and then to combine these components into the complete terrestrial-
to-celestial matrix.

Common to all cases is generating the polar-motion matrix, W (t) in expression (1), by calling
POM2000. This requires the polar coordinates x, y, and the quantity s’; the latter can be estimated
using SP2000.

The matrix for the combined effects of nutation, precession and frame bias is Q(¢) in expression
(1). For the CIO-based transformation, this is the intermediate-to-celestial matrix and can be
obtained using the routine BPN2000, given the CIP position X,Y and the quantity s that defines
the position of the CIO. The TAU 2000A X,Y,s are available by calling the routine XYS2000A.
In the case of the equinox-based transformation, the counterpart to matrix Q(t) is the true-to-
celestial matrix. To obtain this matrix requires the nutation components Ay and Ae; these can be
predicted using the TAU 2000A model by means of the routine NU2000A. Faster but lower-accuracy
predictions are available from the NU2000B routine, which implements the TAU 2000B truncated
model. Once Aty and Ae are known, the true-to-celestial matrix can be obtained by calling the
routine CBPN2000.

The intermediate component is the angle for Earth rotation that defines matrix R(t) in expression
(1). For the CIO-based transformation, the angle in question is the Earth Rotation Angle, 8, which
can be obtained by calling the routine ERA2000. The counterpart in the case of the equinox-based
transformation is the Greenwich (apparent) Sidereal Time. This can be obtained by calling the
routine GST2000, given the nutation in longitude, A1, that was obtained earlier.

The three components are then assembled into the final terrestrial-to-celestial matrix by means of
the routine T2C2000.

Three methods of applying the above scheme are set out below.

Method (1): CIO-based transformation consistent with TAU 2000A precession-nutation

This uses the new (X,Y,s,#) transformation, which is consistent with TAU 2000A precession-
nutation. Having called SP2000 to obtain the quantity s, and knowing the polar motion x,, y,,
the matrix W (t) can be obtained by calling POM2000. The Earth Rotation Angle provided by
expression (13) can be predicted with ERA2000, as a function of UT1. The X,Y, s series, based
on expressions (15) and (16) for X and Y, the coordinates of the CIP, and on Table 5.2¢ for the
quantity s, that defines the position of the CIO, can be generated using the XYS2000A routine.
(Note that this routine computes the full series for s rather than the summary model in Table 5.2c.)
The matrix Q(¢) that transforms from the intermediate system to the GCRS coordinates can then
be generated by means of BPN2000. The finished terrestrial-to-celestial matrix is obtained by
calling the T2C2000 routine, specifying the polar-motion matrix, the Earth Rotation Angle and
the intermediate-to-celestial matrix.

Method (2A): the equinoz-based transformation, using TAU 2000A precession-nutation

An alternative is the classical, equinox-based, transformation, using the TAU 2000A precession-
nutation model and the new IAU-2000-compatible expression for GST.

3http://www.iau-sofa.rl.ac.uk
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As for Method 1, the first step is to use SP2000 and POM2000 to obtain the matrix W(t), given
Zp, Yp. Next, compute the nutation components (lunisolar + planetary) by calling NU2000A. The
Greenwich (apparent) Sidereal Time is predicted by calling GST2000. This requires Ay and TT
as well as UT1. The matrix that transforms from the true equator and equinox of date to GCRS
coordinates can then be generated by means of CBPN2000. Finally, the finished terrestrial-to-
celestial matrix is obtained by calling the T2C2000 routine, specifying the polar-motion matrix,
the Greenwich Sidereal Time and the intermediate-to-celestial matrix.

Method (2B): the classical transformation, using IAU 2000B precession-nutation

The third possibility is to carry out the classical transformation as for Method 2A, but based on
the truncated TAU 2000B precession-nutation model. Using IAU 2000B limits the accuracy to
about 1 mas, but the computations are significantly less onerous than when using the full TAU
2000A model.

The same procedure as in Method (2A) is used, but substituting NU2000B for NU2000A. Depending
on the accuracy requirements, further efficiency optimizations are possible, including setting s’ to
zero, omitting the equation of the equinoxes complementary terms and even neglecting the polar
motion.

Right ascension and declination o
wrt fixed coordinate axes and barycentric origin
realized by ICRF/Hipparcos tagged in TCB

Light Time

—
J2000 equator and equinox

:_| FK5 Proper Motion

Proper Motion

Light Bending

Annual Aberration

Annual Parallax

BCRS

TCB-TCG

IAU1976 precession
| GCRS position of the CIP based on
IAU 2000A precession-nutation |AU1980 nutation
Intermediate right ion and d
measured from the CEO and with respect to the CIP
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4

polar motion, Earth rotation (via Greenwich

rpolar motion, Earth rotation (via Earth Rotation Angle), Apparent Sidereal Time)
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Figure 1. Process to transform from celestial to terrestrial systems. Differences with the past process
are shown on the right of the diagram. .

Fig. 5.1  Process to transform from celestial to terrestrial systems. Differences with the past process
are shown on the right of the diagram.
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5.11 Notes on the new Procedure to Transform from ICRS to ITRS

The transformation from the GCRS to ITRS, which is provided in detail in this chapter for use in
the IERS Conventions, is also part of the more general transformation for computing directions of
celestial objects in intermediate systems.

The procedure to be followed in transforming from the celestial (ICRS) to the terrestrial (ITRS)
systems has been clarified to be consistent with the improving observational accuracy. See Fig-
ure 5.1 (McCarthy and Capitaine (in Capitaine et al., 2002)) for a diagram of the new and old
procedures to be followed. As before, we make use of an intermediate reference system in trans-
forming to a terrestrial system. In this case we call that system the Intermediate Celestial Reference
System. (See also Seidelmann and Kovalevsky (2002).)

The Celestial Intermediate Pole (CIP) that is realized by the IAU2000A /B precession-nutation
model defines its equator and the Conventional Intermediate Origin replaces the equinox.

The position in this reference system is called the intermediate right ascension and declination and
is analogous to the previous designation of “apparent right ascension and declination.”
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