
6 Geopotential (22 March 2006)

Gravitational models commonly used in current (2003) precision orbital analysis by contributors
to the International Laser Ranging Service (ILRS) include EGM96 (Lemoine et al., 1998), JGM-3
(Tapley et al., 1996), and GRIM5-C1 (Gruber et al., 2000). For products of interest to IERS,
similar accuracy is achievable with any of these models. IERS, recognizing the continuous develop-
ment of new gravitational models, and anticipating the results of upcoming geopotential mapping
missions, recommends at this time the EGM96 model as the conventional model. The GM⊕ and
ae values reported with EGM96 (398600.4415 km3/s2 and 6378136.3 m) should be used as scale
parameters with the geopotential coefficients. The recommended GM⊕ = 398600.4418 should be
used with the two-body term when working with Geocentric Coordinate Time (TCG) (398600.4415
or 398600.4356 should be used by those still working with Terrestrial Time (TT) or Barycentric
Dynamical Time (TDB) units, respectively). EGM96 is available at <1>.

If the geopotential is expanded about an origin at the Earth’s center of mass, then the degree
one geopotential harmonic coefficients vanish and the spherical harmonic expansion begins at
degree two. If the geopotential is expanded in a crust-fixed frame (which is offset from the mass
center by the geocenter motion) through the inclusion of degree one harmonics, then Coriolis-type
accelerations must be included to account for the diurnal motion of the crust-fixed frame about
the mass center; this approach is not recommended and is not considered further here.

Values for the C21 and S21 coefficients are included in the EGM96 model. The C21 and S21

coefficients describe the position of the Earth’s figure axis. When averaged over many years, the
figure axis should closely coincide with the observed position of the rotation pole averaged over
the same time period. Any differences between the mean figure and mean rotation pole averaged
would be due to long-period fluid motions in the atmosphere, oceans, or Earth’s fluid core (Wahr,
1987; 1990). At present, there is no independent evidence that such motions are important. The
EGM96 values for C21 and S21 give a mean figure axis that corresponds to the mean pole position
recommended in Chapter 4 Terrestrial Reference Frame.

This choice for C21 and S21 is realized as follows. First, to use the geopotential coefficients to solve
for a satellite orbit, it is necessary to rotate from the Earth-fixed frame, where the coefficients
are pertinent, to an inertial frame, where the satellite motion is computed. This transformation
between frames should include polar motion. We assume the polar motion parameters used are
relative to the IERS Reference Pole. If x̄ and ȳ are the angular displacements of the pole of the
Terrestrial Reference Frame described in Chapter 4 relative to the IERS Reference Pole, then the
values

C̄21 =
√

3x̄C̄20 − x̄C̄22 + ȳS̄22,

S̄21 = −√
3ȳC̄20 − ȳC̄22 − x̄S̄22,

where x̄ = 0.262 × 10−6 radians (equivalent to 0.054 arcsec) and ȳ = 1.730 × 10−6 radians
(equivalent to 0.357 arcsec) are those derived by the IERS Earth Orientation Centre (see sub-
section 7.1.4), so that the mean figure axis coincides with the pole described in Chapter 4. The
EGM96 values at 1 January 2000 are C̄20 = −4.84165209 × 10−4 (tide free), and dC̄20/dt =
+1.162755× 10−11/year.

This gives normalized coefficients of

C̄21(IERS) = −2.23 × 10−10, and
S̄21(IERS) = 14.48 × 10−10.

C̄21 and S̄21 are time variable. The values above are associated with the epoch of 1 January 2000.
The complete definition of the instantaneous values of the two coefficients to use when computing
orbits is given by:

C̄21 = C̄21(t0) + dC̄21/dt[t− t0], and
S̄21 = S̄21(t0) + dS̄21/dt[t− t0],

1http://www.nima.mil/GandG/wgsegm/egm96.html
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where dC̄21/dt and dS̄21/dt are the time derivatives determined at epoch t0 to be −0.337×10−11/y
and +1.606 × 10−11/y respectively. It is also necessary to account for the solid Earth and ocean
pole tide described later in this chapter.

6.1 Effect of Solid Earth Tides

The changes induced by the solid Earth tides in the free space potential are most conveniently
modeled as variations in the standard geopotential coefficients Cnm and Snm (Eanes et al., 1983).
The contributions ∆Cnm and ∆Snm from the tides are expressible in terms of the k Love number.
The effects of ellipticity and of the Coriolis force due to Earth rotation on tidal deformations
necessitates the use of three k parameters, k(0)

nm and k
(±)
nm (except for n = 2) to characterize the

changes produced in the free space potential by tides of spherical harmonic degree and order (nm)
(Wahr, 1981); only two parameters are needed for n = 2 because k(−)

2m = 0 is zero due to mass
conservation.

Anelasticity of the mantle causes k(0)
nm and k

(±)
nm to acquire small imaginary parts (reflecting a

phase lag in the deformational response of the Earth to tidal forces), and also gives rise to a
variation with frequency which is particularly pronounced within the long period band. Though
modeling of anelasticity at the periods relevant to tidal phenomena (8 hours to 18.6 years) is not
yet definitive, it is clear that the magnitudes of the contributions from anelasticity cannot be
ignored (see below). Recent evidence relating to the role of anelasticity in the accurate modeling
of nutation data (Mathews et al., 2002) lends support to the model employed herein, at least up
to diurnal tidal periods; and there is no compelling reason at present to adopt a different model
for the long period tides.

Solid Earth tides within the diurnal tidal band (for which (nm) = (21)) are not wholly due to
the direct action of the tide generating potential (TGP) on the solid Earth; they include the
deformations (and associated geopotential changes) arising from other effects of the TGP, namely,
ocean tides and wobbles of the mantle and the core regions. Deformation due to wobbles arises
from the incremental centrifugal potentials caused by the wobbles; and ocean tides load the crust
and thus cause deformations. Anelasticity affects the Earth’s deformational response to all these
types of forcing.

The wobbles, in turn, are affected by changes in the Earth’s moment of inertia due to deformations
from all sources, and in particular, from the deformation due to loading by the (nm) = (21) part
of the ocean tide; wobbles are also affected by the anelasticity contributions to all deformations,
and by the coupling of the fluid core to the mantle and the inner core through the action of mag-
netic fields at its boundaries (Mathews et al., 2002). Resonances in the wobbles—principally, the
Nearly Diurnal Free Wobble resonance associated with the Free Core Nutation (FCN)—and the
consequent resonances in the contribution to tidal deformation from the centrifugal perturbations
associated with the wobbles, cause the body tide and load Love/Shida number parameters of the
diurnal tides to become strongly frequency dependent. For the derivation of resonance formulae
of the form (6) below to represent this frequency dependence, see Mathews et al., (1995). The
resonance expansions assume that the Earth parameters entering the wobble equations are all
frequency independent. However the ocean tide induced deformation makes a frequency depen-
dent contribution to deformability parameters which are among the Earth parameters just referred
to. It becomes necessary therefore to add small corrections to the Love number parameters com-
puted using the resonance formulae. These corrections are included in the tables of Love number
parameters given in this chapter and the next.

The deformation due to ocean loading is itself computed in the first place using frequency inde-
pendent load Love numbers (see the sections 6.5 and 7.1). Corrections to take account of the
resonances in the load Love numbers are incorporated through equivalent corrections to the body
tide Love numbers, following Wahr and Sasao (1981), as explained further below. These corrections
are also included in the tables of Love numbers.

The degree 2 tides produce time dependent changes in C2m and S2m, through k
(0)
2m, which can

exceed 10−8 in magnitude. They also produce changes exceeding 3 × 10−12 in C4m and S4m

through k
(+)
2m . (The direct contributions of the degree 4 tidal potential to these coefficients are
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negligible.) The only other changes exceeding this cutoff are in C3m and S3m, produced by the
degree 3 part of the tide generating potential.

The computation of the tidal contributions to the geopotential coefficients is most efficiently done
by a three-step procedure. In Step 1, the (2m) part of the tidal potential is evaluated in the time
domain for each m using lunar and solar ephemerides, and the corresponding changes ∆C2m and
∆S2m are computed using frequency independent nominal values k2m for the respective k(0)

2m. The
contributions of the degree 3 tides to C3m and S3m through k

(0)
3m and also those of the degree 2

tides to C4m and S4m through k(+)
2m may be computed by a similar procedure; they are at the level

of 10−11.

Step 2 corrects for the deviations of the k(0)
21 of several of the constituent tides of the diurnal band

from the constant nominal value k21 assumed for this band in the first step. Similar corrections
need to be applied to a few of the constituents of the other two bands also.

Steps 1 and 2 can be used to compute the total tidal contribution, including the time independent
(permanent) contribution to the geopotential coefficient C̄20, which is adequate for a “conventional
tide free” model such as EGM96. When using a “zero tide” model, this permanent part should
not be counted twice, this is the goal of Step 3 of the computation. See section 6.4.

With frequency-independent values knm (Step 1), changes induced by the (nm) part of the tide
generating potential in the normalized geopotential coefficients having the same (nm) are given in
the time domain by

∆C̄nm − i∆S̄nm =
knm

2n+ 1

3∑
j=2

GMj

GM⊕

(Re

rj

)n+1

P̄nm(sin Φj)e−imλj (1)

(with S̄n0 = 0), where

knm = nominal Love number for degree n and order m,

Re = equatorial radius of the Earth,

GM⊕ = gravitational parameter for the Earth,

GMj = gravitational parameter for the Moon (j = 2)
and Sun (j = 3),

rj = distance from geocenter to Moon or Sun,

Φj = body fixed geocentric latitude of Moon or Sun,

λj = body fixed east longitude (from Greenwich) of
Moon or Sun,

and P̄nm is the normalized associated Legendre function related
to the classical (unnormalized) one by

P̄nm = NnmPnm, (2a)

where

Nnm =

√
(n−m)!(2n+ 1)(2 − δom)

(n+m)!
. (2b)

Correspondingly, the normalized geopotential coefficients (C̄nm, S̄nm) are related to the unnormal-
ized coefficients (Cnm, Snm) by

Cnm = NnmC̄nm, Snm = NnmS̄nm. (3)

Equation (1) yields ∆C̄nm and ∆S̄nm for both n = 2 and n = 3 for allm, apart from the corrections
for frequency dependence to be evaluated in Step 2. (The particular case (nm) = (20) needs special
consideration, however, as already indicated.)

One further computation to be done in Step 1 is that of the changes in the degree 4 coefficients
produced by the degree 2 tides. They are given by
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∆C̄4m − i∆S̄4m = k
(+)
2m

5

∑3
j=2

GMj

GM⊕

(
Re

rj

)3

P̄2m(sin Φj)e−imλj , (m = 0, 1, 2), (4)

which has the same form as Equation (1) for n = 2 except for the replacement of k2m by k(+)
2m .

The parameter values for the computations of Step 1 are given in Table 6.1. The choice of these
nominal values has been made so as to minimize the number of terms for which corrections will
have to be applied in Step 2. The nominal value for m = 0 has to be chosen real because there is
no closed expression for the contribution to C̄20 from the imaginary part of k(0)

20 .

Table 6.1 Nominal values of solid Earth tide external potential
Love numbers.

Elastic Earth Anelastic Earth

n m knm k+
nm Re knm Im knm k+

nm

2 0 0.29525 −0.00087 0.30190 −0.00000 −0.00089
2 1 0.29470 −0.00079 0.29830 −0.00144 −0.00080
2 2 0.29801 −0.00057 0.30102 −0.00130 −0.00057
3 0 0.093 · · ·
3 1 0.093 · · ·
3 2 0.093 · · ·
3 3 0.094 · · ·

The frequency dependence corrections to the ∆C̄nm and ∆S̄nm values obtained from Step 1 are
computed in Step 2 as the sum of contributions from a number of tidal constituents belonging to
the respective bands. The contribution to ∆C̄20 from the long period tidal constituents of various
frequencies f is

Re
∑

f(2,0)(A0δkfHf ) eiθf =
∑

f(2,0)[(A0Hfδk
R
f ) cos θf − (A0Hfδk

I
f ) sin θf )], (5a)

while the contribution to (∆C̄21 − i∆S̄21) from the diurnal tidal constituents and to ∆C̄22 − i∆S̄22

from the semidiurnals are given by

∆C̄2m − i∆S̄2m = ηm

∑
f(2,m)

(AmδkfHf ) eiθf , (m = 1, 2), (5b)

where

A0 =
1

Re

√
4π

= 4.4228× 10−8 m−1, (5c)

Am =
(−1)m

Re

√
8π

= (−1)m(3.1274× 10−8) m−1, (m �= 0), (5d)

η1 = −i, η2 = 1, (5e)
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δkf = difference between kf defined as k(0)
2m at frequency f and

the nominal value k2m, in the sense kf − k2m, plus a
contribution from ocean loading,

δkR
f = real part of δkf , and

δkI
f = imaginary part of δkf , i.e., δkf = δkR

f + iδkI
f ,

Hf = amplitude (in meters) of the term at frequency f from
the harmonic expansion of the tide generating potential,
defined according to the convention of Cartwright and
Tayler (1971), and

θf = n̄ · β̄ =
∑6

i=1 niβi, or
θf = m(θg + π) − N̄ · F̄ = m(θg + π) −∑5

j=1NjFj ,

where

β̄ = six-vector of Doodson’s fundamental arguments βi,
(τ, s, h, p,N ′, ps),

n̄ = six-vector of multipliers ni (for the term at frequency f)
of the fundamental arguments,

F̄ = five-vector of fundamental arguments Fj (the Delaunay
variables l, l′, F,D,Ω) of nutation theory,

N̄ = five-vector of multipliers Ni of the Delaunay variables for
the nutation of frequency −f + dθg/dt,

and θg is the Greenwich Mean Sidereal Time expressed in angle
units (i.e. 24h = 360◦; see Chapter 5).

(π in (θg + π) is now to be replaced by 180.)

For the fundamental arguments (l, l′, F,D,Ω) of nutation theory and the convention followed here
in choosing their multipliersNj, see Chapter 5. For conversion of tidal amplitudes defined according
to different conventions to the amplitude Hf corresponding to the Cartwright-Tayler convention,
use Table 6.5 given at the end of this chapter.

For diurnal tides, the frequency dependent values of any load or body tide Love number parameter
L (such as k(0)

21 or k(+)
21 in the present context) may be represented as a function of the tidal

excitation frequency σ by a resonance formula

L(σ) = L0 +
3∑

α=1

Lα

(σ − σα)
, (6)

except for the small corrections referred to earlier. (They are to take account of frequency depen-
dent contributions to a few of the Earth’s deformability parameters, which make (6) inexact.) The
σα, (α = 1, 2, 3), are the respective resonance frequencies associated with the Chandler wobble
(CW), the retrograde free core nutation (FCN), and the prograde free core nutation (PFCN, also
known as the free inner core nutation, FICN), and the Lα are the corresponding resonance coeffi-
cients. All the parameters are complex. The σα and σ are expressed in cycles per sidereal day, with
the convention that positive (negative) frequencies represent retrograde (prograde) waves. (This
sign convention, followed in tidal theory, is the opposite of that employed in analytical theories of
nutation.) In particular, given the tidal frequency f in degrees per hour, one has

σ = f/(15 × 1.002737909),

the factor 1.002737909 being the number of sidereal days per solar day. The values used herein for
the σα are from Mathews et al. (2002), adapted to the sign convention used here:

σ1 = − 0.0026010 − 0.0001361 i
σ2 = 1.0023181 + 0.000025 i
σ3 = 0.999026 + 0.000780 i.

(7)

5



They were estimated from a fit of nutation theory to precession rate and nutation amplitude
estimates found from an analyis of very long baseline interferometry (VLBI) data.

Table 6.2 lists the values of L0 and Lα in resonance formulae of the form (6) for k(0)
21 and k(+)

21 . They
were obtained by evaluating the relevant expressions from Mathews et al. (1995), using values taken
from computations of Buffett and Mathews (unpublished) for the needed deformability parameters
together with values obtained for the wobble resonance parameters in the course of computations
of the nutation results of Mathews et al. (2002). The deformability parameters for an elliptical,
rotating, elastic, and oceanless Earth model based on the 1 sec PREM with the ocean layer replaced
by solid, and corrections to these for the effects of mantle anelasticity, were found by integration
of the tidal deformation equations. Anelasticity computations were based on the Widmer et al.
(1991) model of mantle Q. As in Wahr and Bergen (1986), a power law was assumed for the
frequency dependence of Q, with 200 s as the reference period; the value α = 0.15 was used for the
power law index. The anelasticity contribution (out-of-phase and in-phase) to the tidal changes in
the geopotential coefficients is at the level of one to two percent in-phase, and half to one percent
out-of-phase, i.e., of the order of 10−10. The effects of anelasticity, ocean loading and currents, and
electromagnetic couplings on the wobbles result in indirect contributions to k(0)

21 and k
(+)
21 which

are almost fully accounted for through the values of the wobble resonance parameters. Also shown
in Table 6.2 are the resonance parameters for the load Love numbers h′21, k′21, and l′21, which are
relevant to the solid Earth deformation caused by ocean tidal loading and to the consequential
changes in the geopotential. (Only the real parts are shown: the small imaginary parts make no
difference to the effect to be now considered which is itself small.)

Table 6.2 Parameters in the resonance formulae for k(0)
21 , k(+)

21 and the load
Love numbers.

k(0) k(+)

α Re Lα Im Lα Re Lα Im Lα

0 0.29954 −0.1412× 10−2 −0.804× 10−3 0.237 × 10−5

1 −0.77896× 10−3 −0.3711× 10−4 0.209 × 10−5 0.103 × 10−6

2 0.90963× 10−4 −0.2963× 10−5 −0.182× 10−6 0.650 × 10−8

3 −0.11416× 10−5 0.5325 × 10−7 −0.713× 10−9 −0.330× 10−9

Load Love Numbers (Real parts only)
h′21 l′21 k′21

0 −0.99500 0.02315 −0.30808
1 1.6583× 10−3 2.3232 × 10−4 8.1874× 10−4

2 2.8018× 10−4 −8.4659× 10−6 1.4116× 10−4

3 5.5852× 10−7 1.0724 × 10−8 3.4618× 10−7

The expressions given in section 6.5 for the contributions from ocean tidal loading assume the
constant nominal value k′2(nom) = −0.3075 for k′ of the degree 2 tides. Further contributions arise
from the frequency dependence of k′21. These may be expressed, following Wahr and Sasao (1981),
in terms of an effective ocean tide contribution δk(OT )(σ) to the body tide Love number k(0)

21 :

δk(OT )(σ) = [k′21(σ) − k′2
(nom)]

(
4πGρwR

5ḡ

)
A21(σ), (8)

where G is the constant of universal gravitation, ρw is the density of sea water (1025 kg m−3), R is
the Earth’s mean radius (6.371× 106 m), ḡ is the mean acceleration due to gravity at the Earth’s
surface (9.820 m s−2), and A21(σ) is the admittance for the degree 2 tesseral component of the
ocean tide of frequency σ cpsd:

A21(σ) = ζ21(σ)/H̄(σ).
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ζ21 is the complex amplitude of the height of the (nm) = (21) component of the ocean tide, and H̄
is the height equivalent of the amplitude of the tide generating potential, the bar being a reminder
that the spherical harmonics used in defining the two amplitudes should be identically normalized.
Wahr and Sasao (1981) employed the factorized form

A21(σ) = fFCN (σ) fOD(σ),

wherein the first factor represents the effect of the FCN resonance, and the second, that of other
ocean dynamic factors. The following empirical formulae (Mathews et al., 2002) which provide
good fits to the FCN factors of a set of 11 diurnal tides (Desai and Wahr, 1995) and to the
admittances obtainable from the ocean load angular momenta of four principal tides (Chao et al.,
1996) are used herein:

fOD(σ) = (1.3101− 0.8098 i)− (1.1212 − 0.6030 i)σ,

fFCN (σ) = 0.1732 + 0.9687 feqm(σ),

feqm(σ) =
γ(σ)

1 − (3ρw/5ρ̄)γ′(σ)
,

where γ = 1 + k − h and γ′ = 1 + k′ − h′, ρ̄ is the Earth’s mean density. (Here k stands for k(0)
21 ,

and similarly for the other symbols. Only the real parts need be used.) feqm is the FCN factor for
a global equilibrium ocean.

Table 6.3a shows the values of

δkf ≡ (k(0)
21 (σ) − k21) + δkOT

21 (σ),

along with the real and imaginary parts of the amplitude (A1δkfHf ). The tides listed are those
for which either of the parts is at least 10−13 after round-off. (A cutoff at this level is used for the
individual terms in order that accuracy at the level of 3×10−12 be not affected by the accumulated
contributions from the numerous smaller terms that are disregarded.) Roughly half the value of
the imaginary part comes from the ocean tide term, and the real part contribution from this term
is of about the same magnitude.

The values used for k(0)
21 (σ) in evaluating δkf are from an exact computation necessarily involving

use of the framework of nutation-wobble theory which is outside the scope of this chapter. If the
(approximate) resonance formula were used instead for the computation, the resulting numbers for
δkR

f and δkI
f would require small corrections to match the exact values. In units of 10−5, they are

(in-phase, out-of-phase) (1, 1) for Q1, (1, 1) for O1 and its companion having Doodson numbers
145,545, (1, 0) for NO1, (0,−1) for P1, (244, 299) for ψ1, (12, 12) for φ1, (3, 2) for J1, and (2, 1)
for OO1 and its companion with Doodson numbers 185,565. These are the only tides for which
the corrections would contribute nonneglibily to the numbers listed in the last two columns of the
table.

Calculation of the correction due to any tidal constituent is illustrated by the following example
for K1. Given that Am = A1 = −3.1274× 10−8, and that Hf = 0.36870, θf = (θg +π), and k(0)

21 =
(0.25746+0.00118 i) for this tide, one finds on subtracting the nominal value (0.29830− 0.00144 i)
that δkf = (−0.04084 + 0.00262 i). Equation (5b) then yields:

(∆C̄21)K1
= 470.9 × 10−12 sin(θg + π) − 30.2 × 10−12 cos(θg + π),

(∆S̄21)K1
= 470.9 × 10−12 cos(θg + π) + 30.2 × 10−12 sin(θg + π).

The variation of k(0)
20 across the zonal tidal band, (nm) = (20), is due to mantle anelasticity; it is

described by the formula

k
(0)
20 = 0.29525− 5.796 × 10−4

{
cot

απ

2

[
1 −

(
fm

f

)α]
+ i

(
fm

f

)α}
(9)
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Table 6.3a The in-phase (ip) amplitudes (A1δk
R
f Hf ) and the out-of-phase (op) amplitudes

(A1δk
I
fHf ) of the corrections for frequency dependence of k(0)

21 , taking the nominal value k21

for the diurnal tides as (0.29830− i 0.00144). Units: 10−12. The entries for δkR
f and δkI

f are in
units of 10−5. Multipliers of the Doodson arguments identifying the tidal terms are given, as
also those of the Delaunay variables characterizing the nutations produced by these terms.

Name deg/hr Doodson τ s h p N ′ ps � �′ F D Ω δkR
f δkI

f Amp. Amp.
No. 10−5 10−5 (ip) (op)

2Q1 12.85429 125,755 1 -3 0 2 0 0 2 0 2 0 2 -29 3 -0.1 0.0
σ1 12.92714 127,555 1 -3 2 0 0 0 0 0 2 2 2 -30 3 -0.1 0.0

13.39645 135,645 1 -2 0 1 -1 0 1 0 2 0 1 -45 5 -0.1 0.0
Q1 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -46 5 -0.7 0.1
ρ1 13.47151 137,455 1 -2 2 -1 0 0 -1 0 2 2 2 -49 5 -0.1 0.0

13.94083 145,545 1 -1 0 0 -1 0 0 0 2 0 1 -82 7 -1.3 0.1
O1 13.94303 145,555 1 -1 0 0 0 0 0 0 2 0 2 -83 7 -6.8 0.6
τ1 14.02517 147,555 1 -1 2 0 0 0 0 0 0 2 0 -91 9 0.1 0.0

Nτ1 14.41456 153,655 1 0 -2 1 0 0 1 0 2 -2 2 -168 14 0.1 0.0
14.48520 155,445 1 0 0 -1 -1 0 -1 0 2 0 1 -193 16 0.1 0.0

LK1 14.48741 155,455 1 0 0 -1 0 0 -1 0 2 0 2 -194 16 0.4 0.0
NO1 14.49669 155,655 1 0 0 1 0 0 1 0 0 0 0 -197 16 1.3 -0.1

14.49890 155,665 1 0 0 1 1 0 1 0 0 0 1 -198 16 0.3 0.0
χ1 14.56955 157,455 1 0 2 -1 0 0 -1 0 0 2 0 -231 18 0.3 0.0

14.57176 157,465 1 0 2 -1 1 0 -1 0 0 2 1 -233 18 0.1 0.0
π1 14.91787 162,556 1 1 -3 0 0 1 0 1 2 -2 2 -834 58 -1.9 0.1

14.95673 163,545 1 1 -2 0 -1 0 0 0 2 -2 1 -1117 76 0.5 0.0
P1 14.95893 163,555 1 1 -2 0 0 0 0 0 2 -2 2 -1138 77 -43.4 2.9

15.00000 164,554 1 1 -1 0 0 -1 0 -1 2 -2 2 -1764 104 0.6 0.0
S1 15.00000 164,556 1 1 -1 0 0 1 0 1 0 0 0 -1764 104 1.6 -0.1

15.02958 165,345 1 1 0 -2 -1 0 -2 0 2 0 1 -3048 92 0.1 0.0
15.03665 165,535 1 1 0 0 -2 0 0 0 0 0 -2 -3630 195 0.1 0.0
15.03886 165,545 1 1 0 0 -1 0 0 0 0 0 -1 -3845 229 -8.8 0.5

K1 15.04107 165,555 1 1 0 0 0 0 0 0 0 0 0 -4084 262 470.9 -30.2
15.04328 165,565 1 1 0 0 1 0 0 0 0 0 1 -4355 297 68.1 -4.6
15.04548 165,575 1 1 0 0 2 0 0 0 0 0 2 -4665 334 -1.6 0.1
15.07749 166,455 1 1 1 -1 0 0 -1 0 0 1 0 85693 21013 0.1 0.0
15.07993 166,544 1 1 1 0 -1 -1 0 -1 0 0 -1 35203 2084 -0.1 0.0

ψ1 15.08214 166,554 1 1 1 0 0 -1 0 -1 0 0 0 22794 358 -20.6 -0.3
15.08214 166,556 1 1 1 0 0 1 0 1 -2 2 -2 22780 358 0.3 0.0
15.08434 166,564 1 1 1 0 1 -1 0 -1 0 0 1 16842 -85 -0.3 0.0
15.11392 167,355 1 1 2 -2 0 0 -2 0 0 2 0 3755 -189 -0.2 0.0
15.11613 167,365 1 1 2 -2 1 0 -2 0 0 2 1 3552 -182 -0.1 0.0

φ1 15.12321 167,555 1 1 2 0 0 0 0 0 -2 2 -2 3025 -160 -5.0 0.3
15.12542 167,565 1 1 2 0 1 0 0 0 -2 2 -1 2892 -154 0.2 0.0
15.16427 168,554 1 1 3 0 0 -1 0 -1 -2 2 -2 1638 -93 -0.2 0.0

θ1 15.51259 173,655 1 2 -2 1 0 0 1 0 0 -2 0 370 -20 -0.5 0.0
15.51480 173,665 1 2 -2 1 1 0 1 0 0 -2 1 369 -20 -0.1 0.0
15.58323 175,445 1 2 0 -1 -1 0 -1 0 0 0 -1 325 -17 0.1 0.0

J1 15.58545 175,455 1 2 0 -1 0 0 -1 0 0 0 0 324 -17 -2.1 0.1
15.58765 175,465 1 2 0 -1 1 0 -1 0 0 0 1 323 -16 -0.4 0.0

SO1 16.05697 183,555 1 3 -2 0 0 0 0 0 0 -2 0 194 -8 -0.2 0.0
16.12989 185,355 1 3 0 -2 0 0 -2 0 0 0 0 185 -7 -0.1 0.0

OO1 16.13911 185,555 1 3 0 0 0 0 0 0 -2 0 -2 184 -7 -0.6 0.0
16.14131 185,565 1 3 0 0 1 0 0 0 -2 0 -1 184 -7 -0.4 0.0
16.14352 185,575 1 3 0 0 2 0 0 0 -2 0 0 184 -7 -0.1 0.0

ν1 16.68348 195,455 1 4 0 -1 0 0 -1 0 -2 0 -2 141 -4 -0.1 0.0
16.68569 195,465 1 4 0 -1 1 0 -1 0 -2 0 -1 141 -4 -0.1 0.0

8



on the basis of the anelasticity model referred to earlier. Here f is the frequency of the zonal tidal
constituent, fm is the reference frequency equivalent to a period of 200 s, and α = 0.15. The δkf

in Table 6.3b are the differences between k(0)
20 computed from the above formula and the nominal

value k20 = 0.30190 given in Table 6.1.

The total variation in geopotential coefficient C̄20 is obtained by adding to the result of Step 1 the
sum of the contributions from the tidal constituents listed in Table 6.3b computed using equation
(5a). The tidal variations in C̄2m and S̄2m for the other m are computed similarly, except that
equation (5b) is to be used together with Table 6.3a for m = 1 and Table 6.3c for m = 2.

Table 6.3b Corrections for frequency dependence of k(0)
20 of the zonal tides due to anelasticity.

Units: 10−12. The nominal value k20 for the zonal tides is taken as 0.30190. The
real and imaginary parts δkR

f and δkI
f of δkf are listed, along with the corresponding

in-phase (ip) amplitude (A0Hfδk
R
f ) and out-of-phase (op) amplitude (A0Hfδk

I
f ) to be

used in equation (5a).

Name Doodson deg/hr τ s h p N ′ ps � �′ F D Ω δkR
f Amp. δkI

f Amp.
No. (ip) (op)
55,565 0.00221 0 0 0 0 1 0 0 0 0 0 1 0.01347 16.6 -0.00541 -6.7
55,575 0.00441 0 0 0 0 2 0 0 0 0 0 2 0.01124 -0.1 -0.00488 0.1

Sa 56,554 0.04107 0 0 1 0 0 -1 0 -1 0 0 0 0.00547 -1.2 -0.00349 0.8
Ssa 57,555 0.08214 0 0 2 0 0 0 0 0 -2 2 -2 0.00403 -5.5 -0.00315 4.3

57,565 0.08434 0 0 2 0 1 0 0 0 -2 2 -1 0.00398 0.1 -0.00313 -0.1
58,554 0.12320 0 0 3 0 0 -1 0 -1 -2 2 -2 0.00326 -0.3 -0.00296 0.2

Msm 63,655 0.47152 0 1 -2 1 0 0 1 0 0 -2 0 0.00101 -0.3 -0.00242 0.7
65,445 0.54217 0 1 0 -1 -1 0 -1 0 0 0 -1 0.00080 0.1 -0.00237 -0.2

Mm 65,455 0.54438 0 1 0 -1 0 0 -1 0 0 0 0 0.00080 -1.2 -0.00237 3.7
65,465 0.54658 0 1 0 -1 1 0 -1 0 0 0 1 0.00079 0.1 -0.00237 -0.2
65,655 0.55366 0 1 0 1 0 0 1 0 -2 0 -2 0.00077 0.1 -0.00236 -0.2

Msf 73,555 1.01590 0 2 -2 0 0 0 0 0 0 -2 0 -0.00009 0.0 -0.00216 0.6
75,355 1.08875 0 2 0 -2 0 0 -2 0 0 0 0 -0.00018 0.0 -0.00213 0.3

Mf 75,555 1.09804 0 2 0 0 0 0 0 0 -2 0 -2 -0.00019 0.6 -0.00213 6.3
75,565 1.10024 0 2 0 0 1 0 0 0 -2 0 -1 -0.00019 0.2 -0.00213 2.6
75,575 1.10245 0 2 0 0 2 0 0 0 -2 0 0 -0.00019 0.0 -0.00213 0.2

Mstm 83,655 1.56956 0 3 -2 1 0 0 1 0 -2 -2 -2 -0.00065 0.1 -0.00202 0.2
Mtm 85,455 1.64241 0 3 0 -1 0 0 -1 0 -2 0 -2 -0.00071 0.4 -0.00201 1.1

85,465 1.64462 0 3 0 -1 1 0 -1 0 -2 0 -1 -0.00071 0.2 -0.00201 0.5
Msqm 93,555 2.11394 0 4 -2 0 0 0 0 0 -2 -2 -2 -0.00102 0.1 -0.00193 0.2
Mqm 95,355 2.18679 0 4 0 -2 0 0 -2 0 -2 0 -2 -0.00106 0.1 -0.00192 0.1

Table 6.3c Amplitudes (A2δkfHf ) of the corrections for frequency dependence of k(0)
22 , taking the

nominal value k22 for the sectorial tides as (0.30102 − i 0.00130). Units: 10−12. The
corrections are only to the real part.

Name Doodson deg/hr τ s h p N ′ ps � �′ F D Ω δkR
f Amp.

No.
N2 245,655 28.43973 2 -1 0 1 0 0 1 0 2 0 2 0.00006 -0.3
M2 255,555 28.98410 2 0 0 0 0 0 0 0 2 0 2 0.00004 -1.2

6.2 Solid Earth Pole Tide

The pole tide is generated by the centrifugal effect of polar motion, characterized by the potential

∆V (r, θ, λ) = −Ω2r2

2 sin 2θ (m1 cosλ+m2 sinλ)

= −Ω2r2

2 sin 2θ Re [(m1 − im2) eiλ].
(10)
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(See sub-section 7.1.4 for further details, including the relation of the wobble variables (m1,m2)
to the polar motion variables (xp, yp).) The deformation which constitutes this tide produces a
perturbation

−Ω2r2

2
sin 2θ Re [k2 (m1 − im2) eiλ]

in the external potential, which is equivalent to changes in the geopotential coefficients C21 and
S21. Using for k2 the value 0.3077 + 0.0036 i appropriate to the polar tide yields

∆C̄21 = −1.333 × 10−9(m1 + 0.0115m2),
∆S̄21 = −1.333 × 10−9(m2 − 0.0115m1),

where m1 and m2 are in seconds of arc.

6.3 Ocean Pole Tide

The ocean pole tide is generated by the centrifugal effect of polar motion on the oceans. This
centrifugal effect is defined in equation (10) from section 6.2. Polar motion is dominated by the
14-month Chandler wobble and annual variations. At these long periods, the ocean pole tide is
expected to have an equilibrium response, where the displaced ocean surface is in equilibrium with
the forcing equipotential surface.
Desai (2002) presents a self-consistent equilibrium model of the ocean pole tide. This model ac-
counts for continental boundaries, mass conservation over the oceans, self-gravitation, and loading
of the ocean floor. Using this model, the ocean pole tide produces the following perturbations to
the normalized geopotential coefficients, as a function of the wobble variables (m1,m2).

[
∆C̄nm

∆S̄nm

]
= Rn

{[
ĀR

nm

B̄R
nm

] (
m1γ

R
2 +m2γ

I
2

)
+
[
ĀI

nm

B̄I
nm

] (
m2γ

R
2 −m1γ

I
2

)}
(11a)

where

Rn =
Ω2a4

E

GM

4πGρw

ge

(
1 + k′n
2n+ 1

)
(11b)

and
Ω, aE , GM , ge, and G are defined in Chapter 1,
ρw = density of sea water = 1025 kgm−3,
k′n = load deformation coefficients (k′2 = −0.3075, k′3 = −0.195, k′4 = −0.132, k′5 = −0.1032, k′6 =
−0.0892),
γ = γR

2 + iγI
2 = (1 + k2 − h2) = 0.6870+ i0.0036 (Values of k2 and h2 appropriate for the pole tide

are as given in sections 6.2 and 7.1.4),
(m1,m2) are the wobble parameters in radians. Refer to sub-section 7.1.4 for the relationship
between the wobble variables (m1,m2) and the polar motion variable (xp, yp).
The coefficients from the self-consistent equilibrium model, Ānm = ĀR

nm + iĀI
nm and B̄nm =

B̄R
nm + iB̄I

nm, are provided to degree and order 360 at <2>.
The (n,m) = (2, 1) coefficients are the dominant terms of the ocean pole tide. Using the values
defined above yields the following (n,m) = (2, 1) coefficients for the ocean pole tide:

∆C̄21 = −2.2344× 10−10(m1 − 0.01737m2),
∆S̄21 = −1.7680× 10−10(m2 − 0.03351m1),

where m1 and m2 are in seconds of arc. Approximately 90% of the variance of the ocean pole
tide potential is provided by the degree n = 2 spherical harmonic components, with the next
largest contributions provided by the degree n = 1 and n = 3 components, respectively (see Figure
6.1). Expansion to spherical harmonic degree n = 10 provides approximately 99% of the variance.
However, adequate representation of the continental boundaries will require a spherical harmonic
expansion to high degree and order. The degree n = 1 components are shown in Figure 6.1 to
illustrate the size of the ocean pole tide contribution to geocenter motion but these terms should
not be used in modeling station displacements.

2ftp://tai.bipm.org/iers/convupdt/chapter6/desaiscopolecoef.txt
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Fig. 6.1 Ocean pole tide: first spherical harmonic components.

6.4 Treatment of the Permanent Tide

The degree 2 zonal tide generating potential has a mean (time average) value that is nonzero. This
time independent (nm) = (20) potential produces a permanent deformation and a consequent
time independent contribution to the geopotential coefficient C̄20. In formulating a geopotential
model, two approaches may be taken (see Chapter 1). When the time independent contribution is
included in the adopted value of C̄20, then the value is termed “zero tide” and will be noted here
C̄zt

20. This is the case for the JGM-3 model. If the time independent contribution is not included
in the adopted value of C̄20, then the value is termed “conventional tide free” and will be noted
here C̄tf

20 . This is the case of the EGM96 model.

When using the EGM96 geopotential model as originally disseminated, i.e. as a “conventional tide
free” model, the full tidal model given by (1), computed according to the preceding sections, should
be used.
In the case of a “zero tide” geopotential model, the model of tidal effects to be added should not
once again contain a time independent part. One must not then use the expression (1) as it stands
for modeling ∆C̄20; its permanent part must first be restored. This is Step 3 of the computation,
which provides us with ∆C̄20.

The symbol ∆C̄20 will hereafter be reserved for the temporally varying part of (1) while the full
expression will be redesignated as ∆C̄20

∗ and the time independent part ∆C̄perm
20 . Thus

∆C̄20 = ∆C̄∗
20 − 〈∆C̄20

∗〉, (12)

where

∆C̄∗
20 =

k20

5

3∑
j=2

GMj

GM⊕

(
Re

rj

)3

P̄20(sin Φj),

〈∆C̄∗
20〉 = A0H0k20 = (4.4228× 10−8)(−0.31460)k20. (13)

When using the tidal model of section 6.1 with k20 = 0.30190, 〈∆C̄20〉 = −4.201× 10−9, therefore
C̄zt

20 = −0.484169410× 10−3 at epoch 2000.
The use of “zero tide” values and the subsequent removal of the effect of the permanent tide from
the tide model is presented for consistency with the 18th IAG General Assembly Resolution 16.
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6.5 Effect of the Ocean Tides

The dynamical effects of ocean tides are most easily incorporated by periodic variations in the
normalized Stokes’ coefficients. These variations can be written as

∆C̄nm − i∆S̄nm = Fnm

∑
s(n,m)

−∑
+

(C±
snm ∓ iS±

snm)e±iθs , (14)

where

Fnm =
4πGρw

ge

√
(n+m)!

(n−m)!(2n+ 1)(2 − δom)

(
1 + k′n
2n+ 1

)
,

ge and G are given in Chapter 1,
ρw = density of seawater = 1025 kg m−3,
k′n = load deformation coefficients (k′2 =−0.3075,

k′3 =−0.195, k′4=−0.132, k′5=−0.1032, k′6=−0.0892),
C±

snm, S
±
snm = ocean tide coefficients (m) for the tide constituent s
θs = argument of the tide constituent s as defined in the

solid tide model (Equation 5).

Note that the index s is used in this section to identify the tide constituents while the index f is
used in other parts of the document.

The summation over + and − denotes the respective addition of the retrograde waves using the top
sign and the prograde waves using the bottom sign. The C±

snm and S±
snm are the coefficients of a

spherical harmonic decomposition of the ocean tide height for the ocean tide due to the constituent
s of the tide generating potential.

For each constituent s in the diurnal and semidiurnal tidal bands, these coefficients were obtained
from the CSR 3.0 ocean tide height model (Eanes and Bettadpur, 1995), which was estimated
from the TOPEX/ Poseidon satellite altimeter data. For each constituent s in the long period
band, the self-consistent equilibrium tide model of Ray and Cartwright (1994) was used. The list
of constituents for which the coefficients were determined was obtained from the Cartwright and
Tayler (1971) expansion of the tide generating potential.

These ocean tide height harmonics are related to the Schwiderski convention (Schwiderski, 1983)
according to

C±
snm − iS±

snm = −iĈ±
snme

i(ε±snm+χs), (15)

where
Ĉ±

snm = ocean tide amplitude for constituent s using the
Schwiderski notation,

ε±snm = ocean tide phase for constituent s, and
χs is obtained from Table 6.4, with Hs being the Cartwright

and Tayler (1971) amplitude at frequency s.

Table 6.4 Values of χs for long-period, diurnal
and semidiurnal tides.

Tidal Band Hs > 0 Hs < 0
Long Period π 0
Diurnal π

2 −π
2

Semidiurnal 0 π

For clarity, the terms in equation 14 are repeated in both conventions:

∆C̄nm = Fnm

∑
s(n,m)

[(C+
snm + C−

snm) cos θs + (S+
snm + S−

snm) sin θs] (16a)

or
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∆C̄nm = Fnm

∑
s(n,m)

[Ĉ+
snm sin(θs + ε+snm + χs) + Ĉ−

snm sin(θs + ε−snm + χs)], (16b)

∆S̄nm = Fnm

∑
s(n,m)

[(S+
snm − S−

snm) cos θs − (C+
snm − C−

snm) sin θs] (16c)

or

∆S̄nm = Fnm

∑
s(n,m)

[Ĉ+
snm cos(θs + ε+snm +χs)− Ĉ−

snm cos(θs + ε−snm +χs)]. (16d)

The orbit element perturbations due to ocean tides can be loosely grouped into two classes. The
resonant perturbations arise from coefficients for which the order (m) is equal to the first Doodson’s
argument multiplier n1 of the tidal constituent s (See Note), and have periodicities from a few
days to a few years. The non-resonant perturbations arise when the order m is not equal to index
n1. The most important of these are due to ocean tide coefficients for which m = n1 + 1 and have
periods of about 1 day.

Certain selected constituents (e.g. Sa and S2) are strongly affected by atmospheric mass distri-
bution (Chapman and Lindzen, 1970). The resonant harmonics (for m = n1) for some of these
constituents were determined by their combined effects on the orbits of several satellites. These
multi-satellite values then replaced the corresponding values from the CSR 3.0 altimetric ocean
tide height model.

Based on the predictions of the linear perturbation theory outlined in Casotto (1989), the relevant
tidal constituents and spherical harmonics were selected for several geodetic and altimetric satel-
lites. For geodetic satellites, both resonant and non-resonant perturbations were analyzed,whereas
for altimetric satellites, only the non-resonant perturbations were analyzed. For the latter, the
adjustment of empirical parameters during orbit determination removes the errors in modeling
resonant accelerations. The resulting selection of ocean tidal harmonics was then merged into a
single recommended ocean tide force model. With this selection the error of omission on TOPEX
is approximately 5 mm along-track, and for Lageos it is 2 mm along-track. The recommended
ocean tide harmonic selection is available via anonymous ftp from <3>.

For high altitude geodetic satellites like Lageos, in order to reduce the required computing time,
it is recommended that out of the complete selection, only the constituents whose Cartwright and
Tayler amplitudes Hs is greater than 0.5 mm be used, with their spherical harmonic expansion
terminated at maximum degree and order 8. The omission errors from this reduced selection on
Lageos is estimated at approximately 1 cm in the transverse direction for short arcs.

NOTE: The Doodson variable multipliers (n̄) are coded into the argument number (A) after Doo-
dson (1921) as:

A = n1(n2 + 5)(n3 + 5).(n4 + 5)(n5 + 5)(n6 + 5).

6.6 Conversion of Tidal Amplitudes defined according to Different
Conventions

The definition used for the amplitudes of tidal terms in the recent high-accuracy tables differ
from each other and from Cartwright and Tayler (1971). Hartmann and Wenzel (1995) tabulate
amplitudes in units of the potential (m2s−2), while the amplitudes of Roosbeek (1996), which
follow the Doodson (1921) convention, are dimensionless. To convert them to the equivalent
tide heights Hf of the Cartwright-Tayler convention, multiply by the appropriate factors from
Table 6.5. The following values are used for the constants appearing in the conversion factors:
Doodson constant D1 = 2.63358352855 m2 s−2; ge ≡ g at the equatorial radius = 9.79828685
(from GM = 3.986004415× 1014 m3 s−2, Re = 6378136.55 m).

3ftp.csr.utexas.edu/pub/tide
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Table 6.5 Factors for conversion to Cartwright-Tayler ampli-
tudes from those defined according to Doodson’s
and Hartmann and Wenzel’s conventions.

From Doodson From Hartmann & Wenzel

f20 = −
√

4π√
5

D1
ge

= −0.426105 f ′
20 = 2

√
π

ge
= 0.361788

f21 = − 2
√

24π
3
√

5
D1
ge

= −0.695827 f ′
21 = −

√
8π

ge
= −0.511646

f22 =
√

96π
3
√

5
D1
ge

= 0.695827 f ′
22 =

√
8π

ge
= 0.511646

f30 = −
√

20π√
7

D1
ge

= −0.805263 f ′
30 = 2

√
π

ge
= 0.361788

f31 =
√

720π
8
√

7
D1
ge

= 0.603947 f ′
31 =

√
8π

ge
= 0.511646

f32 =
√

1440π
10

√
7

D1
ge

= 0.683288 f ′
32 =

√
8π

ge
= 0.511646

f33 = −
√

2880π
15

√
7

D1
ge

= −0.644210 f ′
33 = −

√
8π

ge
= −0.511646
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