
9 Tropospheric Model (22 June 2007)

9.1 Optical Techniques

The accuracy of satellite and lunar laser ranging (SLR & LLR) is greatly affected by the resid-
ual errors in modeling the effect of signal propagation through the troposphere and stratosphere.
Although several models for atmospheric correction have been developed, the more traditional
approach in LR data analysis uses a model developed in the 1970s (Marini and Murray, 1973).
Mendes et al. (2002) pointed out some limitations in that model, namely the modeling of the eleva-
tion dependence of the zenith atmospheric delay, i.e. the mapping function (MF) component of the
model. The MFs developed by Mendes et al. (2002) represent a significant improvement over the
MF in the Marini-Murray model and other known MFs. Of particular interest is the ability of the
new MFs to be used in combination with any zenith delay (ZD) model to predict the atmospheric
delay in the line-of-sight direction. Subsequently, Mendes and Pavlis (2004) developed a more
accurate ZD model, applicable to the range of wavelengths used in modern LR instrumentation.
The combined set of the new mapping function and the new ZD model were adopted in October
2006 by the Analysis Working Group of the International Laser Ranging Service (ILRS) as the new
standard model to be used for the analysis of LR data starting January 1, 2007. The alternative
to correct the atmospheric delay using two-color ranging systems is still at an experimental stage.

9.1.1 Zenith Delay Models

The atmospheric propagation delay experienced by a laser signal in the zenith direction is defined
as

dz
atm = 10−6

ra∫
rs

Ndz =

ra∫
rs

(n − 1) dz, (1)

or, if we split the zenith delay into hydrostatic (dz
h) and non-hydrostatic (dz

nh) components,

dz
atm = dz

h + dz
nh = 10−6

ra∫
rs

Nhdz + 10−6

ra∫
rs

Nnhdz, (2)

where N = (n − 1) × 106 is the (total) group refractivity of moist air, n is the (total) refractive
index of moist air, Nh and Nnh are the hydrostatic and the non-hydrostatic components of the
refractivity, rs is the geocentric radius of the laser station, ra is the geocentric radius of the top of
the (neutral) atmosphere, and dz

atm and dz have length units.

In the last few years, the computation of the group refractivity at optical wavelengths has received
special attention and, as a consequence, the International Association of Geodesy (IAG) (IUGG,
1999) recommended a new procedure to compute the group refractivity, following Ciddor (1996)
and Ciddor and Hill (1999). Based on this procedure, Mendes and Pavlis (2004) derived closed-form
expressions to compute the zenith delay. For the hydrostatic component, we have

dz
h = 0.002416579

fh(λ)
fs(φ, H)

Ps, (3)

where dz
h is the zenith hydrostatic delay, in meters, and Ps is the surface barometric pressure, in

hPa. The function fs(φ, H) is given by

fs(φ, H) = 1 − 0.00266 cos2φ − 0.00000028H, (4)

where φ is the geodetic latitude of the station and H is the geodetic height of the station in meters
<1>, fh (λ) is the dispersion equation for the hydrostatic component

1originally, Saastamoinen (1972) used orthometric height, however, the formula is insensitive to the difference, so
geodetic height can be used instead without loss of accuracy.
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fh (λ) = 10−2 ×
[
k∗
1

(
k0 + σ2

)
(k0 − σ2)2

+ k∗
3

(
k2 + σ2

)
(k2 − σ2)2

]
CCO2 , (5)

with k0 = 238.0185 μm−2, k2 = 57.362 μm−2, k∗
1 = 19990.975 μm−2, and k∗

3 = 579.55174 μm−2,
σ is the wave number (σ = λ−1, where λ is the wavelength, in μm), CCO2 = 1 + 0.534 ×
10−6 (xc − 450), and xc is the carbon dioxide (CO2) content, in ppm. In the conventional for-
mula, a CO2 content of 375 ppm should be used, in line with the IAG recommendations, thus
CCO2 = 0.99995995 should be used.

For the non-hydrostatic component, we have:

dz
nh = 10−4 (5.316fnh(λ) − 3.759fh(λ))

es

fs(φ, H)
, (6)

where dz
nh is the zenith non-hydrostatic delay, in meters, and es is the surface water vapor pressure,

in hPa. fnh is the dispersion formula for the non-hydrostatic component:

fnh (λ) = 0.003101
(
ω0 + 3ω1σ

2 + 5ω2σ
4 + 7ω3σ

6
)
, (7)

where ω0 = 295.235, ω1 = 2.6422 μm2, ω2 = −0.032380 μm4, and ω3 = 0.004028 μm6.

The subroutine fcul ztd hPa.f to compute the total zenith delay is available at <2>.

From the assessment of the zenith models against ray tracing for the most used wavelengths in
LR, it can be concluded that these zenith delay models have overall rms errors for the total zenith
delay below 1 mm across the whole frequency spectrum (Mendes and Pavlis, 2003; Mendes and
Pavlis, 2004).

9.1.2 Mapping Function

Due to the small contribution of water vapor to atmospheric refraction at visible wavelengths, we
can consider a single MF for laser ranging. In this case, we have:

datm = dz
atm · m(e), (8)

where dz
atm is the total zenith propagation delay and m(e) the (total) MF. Mendes et al. (2002)

derived a MF, named FCULa, based on a truncated form of the continued fraction in terms of
1/sin(e) (Marini, 1972), normalized to unity at the zenith

m(e) =

1 +
a1

1 +
a2

1 + a3

sin e +
a1

sin e +
a2

sin e + a3

. (9)

Note that the same formula is used for radio techniques, but with different variables, see equation
(13). The FCULa MF is based on ray tracing through one full year of radiosonde data from 180
globally distributed stations. It is valid for a wide range of wavelengths from 0.355 μm to 1.064
μm (Mendes and Pavlis, 2003) and for elevation angles greater than 3 degrees, if we neglect the
contribution of horizontal refractivity gradients. The coefficients ai (i=1,2,3) have the following
mathematical formulation:

2ftp://tai.bipm.org/iers/convupdt/chapter9
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Table 1: Coefficients (aij) for the FCULa mapping function, see equation (10). Coefficients (ai1) are
in C−1 and coefficients (ai3) in m−1.

aij FCULa
a10 (12100.8±1.9) × 10−7

a11 (1729.5±4.3) × 10−9

a12 (319.1±3.1) × 10−7

a13 (-1847.8±6.5) × 10−11

a20 (30496.5±6.6) × 10−7

a21 (234.6±1.5) × 10−8

a22 (-103.5±1.1) × 10−6

a23 (-185.6±2.2) × 10−10

a30 (6877.7±1.2) × 10−5

a31 (197.2±2.8) × 10−7

a32 (-345.8±2.0) × 10−5

a33 (106.0±4.2) × 10−9

ai = ai0 + ai1ts + ai2 cosφ + ai3H, (10)

where ts is the temperature at the station in Celsius degrees, H is the geodetic height of the
station, in meters, and the coefficients are given in Table 1, see Mendes et al. (2002) for details.
The subroutine FCUL a.f to compute the FCULa mapping function is available at <2>.

The new mapping functions represent a significant improvement over other mapping functions
available and have the advantage of being easily combined with different zenith delay models. The
analysis of two years of SLR data from LAGEOS and LAGEOS 2 indicate a clear improvement
in the estimated station heights (8% reduction in variance), while the simultaneously adjusted
tropospheric zenith delay biases were all consistent with zero (Mendes et al., 2002).

For users who do not have extreme accuracy requirements or do not know the station temperature,
the FCULb mapping function, which depends on the station location and the day of the year, has
been developed, see Mendes et al. (2002) for details. The subroutine FCUL b.f to compute the
FCULb mapping function is available at <2>.

9.1.3 Future Developments

The accuracy of the new atmospheric delay models are still far from the accuracy required for
global climate change studies. The goal as set forth by the International Laser Ranging Service
(ILRS) is better than one millimeter. The LR community has been looking into ways to achieve
that accuracy. One significant component that is missing from the above models is to account for
the effect of horizontal gradients in the atmosphere, an error source that contributes up to 5 cm of
delay at low elevation angles. Ranging at low elevation angles improves the de-correlation of errors
in the vertical coordinate with errors in the measurement process (biases). Stations thus strive to
range as low as possible, thence the need for model improvements.

Global meteorological fields are now becoming more readily accessible, with higher spatio-temporal
resolution, better accuracy and more uniform quality. This is primarily due to the availability of
satellite observations with global coverage twice daily. Hulley and Pavlis (2007) developed a new
technique, and tested it with real data, computing the total atmospheric delay, including horizontal
gradients, via three-dimensional atmospheric ray tracing (3D ART) with meteorological fields from
the Atmospheric Infrared Sounder (AIRS). This technique has already been tested and applied to
two years of SLR data from LAGEOS 1 and 2, and for ten core, globally-distributed SLR stations.
Replacing the atmospheric corrections estimated from the Mendes-Pavlis ZD and MF models with
3D ART resulted in reducing the variance of the SLR range residuals by up to 25% for all the
data used in the analysis. As of May 2007, an effort is in progress to establish a service that will
compute these corrections for all of the collected SLR and LLR data in the future. Once this
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service is in place, it is expected that this new approach will be adopted as the standard for SLR
and LLR data reductions.

9.2 Radio Techniques

The non-dispersive delay imparted by the atmosphere on a radio signal up to 30 GHz in frequency,
which reaches a magnitude of about 2.3 m at sea level, is conveniently divided into “hydrostatic”
and “wet” components. The hydrostatic delay is caused by the refractivity of the dry gases
(mainly N2 and O2) in the troposphere and by most of the nondipole component of the water
vapor refractivity. The rest of the water vapor refractivity is responsible for most of the wet delay.
The hydrostatic delay component accounts for roughly 90% of the total delay at any given site
globally, but can vary between about 80 and 100% depending on location and time of year. It
can be accurately computed a priori based on reliable surface pressure data using the formula of
Saastamoinen (1972) as given by Davis et al. (1985):

Dhz =
[(0.0022768± 0.0000005)]P0

fs(φ, H)
(11)

where Dhz is the zenith hydrostatic delay in meters, P0 is the total atmospheric pressure in hPa
(equivalent to millibars) at the antenna reference point (e.g. antenna phase center for GPS, the
intersection of the axes of rotation for VLBI 3), and the function fs(φ, H) is given in equation (4).

There is currently no simple method to estimate an accurate a priori value for the wet tropospheric
delay, although research continues into the use of external monitoring devices (such as water vapor
radiometers) for this purpose. So, in most precise applications where sub-decimeter accuracy is
sought, the residual delay must usually be estimated with the other geodetic quantities of interest.
The estimation is facilitated by a simple parameterization of the tropospheric delay, where the
line-of-sight delay, DL, is expressed as a function of four parameters as follows:

DL = mh(e)Dhz + mw(e)Dwz + mg(e)[GN cos(a) + GE sin(a)]. (12)

The four parameters in this expression are the zenith hydrostatic delay, Dhz, the zenith wet delay,
Dwz, and a horizontal delay gradient with components GN and GE . mh, mw and mg are the
hydrostatic, wet, and gradient mapping functions, respectively, and e is the elevation angle of the
observed radio source in vacuum. a is the azimuth angle in which the signal is received, measured
east from north. Horizontal gradients are needed to account for a systematic component in the
N/S direction towards the equator due to the atmospheric bulge and also for random components
in both directions due to weather systems. Horizontal tropospheric gradients can reach or exceed
1 mm and their estimation was shown by Chen and Herring (1997) and MacMillan (1995) to be
beneficial in VLBI, and by Bar-Sever et al. (1998) to be beneficial in GPS. Davis et al. (1993)
and MacMillan (1995) recommend using either mg(e) = mh(e) cot(e) or mg(e) = mw(e) cot(e).
Chen and Herring (1997) propose using mg(e) = 1/(sin e tan e + 0.0032). The various forms agree
to within 10% for elevation angles higher than 10◦, but the differences reach 50% for 5◦ elevation
due to the singularity of the cot(e) function. The estimation of gradients is only worthwhile when
using data lower than 15◦ in elevation. In the case of GPS analyses, such low-elevation data could
be deweighted because of multipath effects.

The hydrostatic and wet mapping functions, mh and mw, for the neutral atmosphere depend on
the vertical distribution of the hydrostatic and wet refractivity above the geodetic sites. With
the availability of numerical weather models (NWM) this information can currently be extracted
globally with a temporal resolution of six hours (Niell, 2001). Unlike previous mapping functions
these are not limited in their accuracy by the use of only surface meteorological data, as in the

3In the case of VLBI, provision should be made to account for the actual path of the photons due to the possible
altitude variation of the reference point (Sovers and Jacobs, 1996)
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functions of Lanyi (1984), Ifadis (1986) or in MTT (Herring, 1992), nor by the use of average in
situ properties of the atmosphere, even if validated with radiosonde data, as in NMF (Niell, 1996).
The general form of the hydrostatic and wet mapping functions is (Herring, 1992)

mh,w (e) =

1 +
a

1 +
b

1 + c

sin e +
a

sin e +
b

sin e + c

. (13)

The Vienna Mapping Function 1 (VMF1) (Boehm et al., 2006a) is based on exact ray traces through
the refractivity profiles of a NWM at 3◦ elevation and empirical equations for the b and c coefficients
of the continued fraction in equation (13). Niell (2006) compared mapping functions determined
from radiosonde data in 1992 with VMF1 and found that the equivalent station height standard
deviations are less than 3 mm, which is significantly better than for other mapping functions
available. These results are confirmed by VLBI analyses as shown by Boehm et al. (2007a) and
Tesmer et al. (2007), respectively. Thus, VMF1 is recommended for any global application, such
as the determination of the terrestrial reference frame and Earth orientation parameters.

At the webpage <4>, the a coefficients of VMF1 as derived from data of the European Centre for
Medium-Range Weather Forecasts (ECMWF) are provided with a time interval of 6 hours for the
positions of all sites of the International GNSS Service (IGS), the International VLBI Service for
Geodesy and Astrometry (IVS), and the International DORIS Service (IDS), as well as on a global
2.5◦ × 2.0◦ grid. Kouba (2007) compares results from the grids with VMF1 given at the sites, and
he provides algorithms on how to use the grids.

The Global Mapping Function (GMF) (Boehm et al., 2006b) is an empirical mapping function in
the tradition of NMF that can be calculated using only station latitude, longitude (not used by
NMF), height, and day of the year. GMF, which is based on spherical harmonics up to degree and
order 9, was developed with the goal to be more accurate than NMF and to be consistent with
VMF1. Some comparisons of GMF, VMF1 and other MFs with radiosonde data may be found in
(Niell, 2006). GMF is easy to implement and can be used when the best accuracy is not required
or when VMF1 is not available. The Fortran subroutine gmf.f is available at <2> and <4>.

9.3 Sources for meteorological data

Because 1 mbar pressure error causes an a priori delay error of about 2.3 mm at sea level, it is
essential to use accurate estimates of meteorological data (Tregoning and Herring, 2006). If me-
teorological instrumentation is not available, meteorological data may be retrieved from a NWM,
e.g. the ECMWF as provided together with VMF1 at <4>. In both cases adjustments of the
pressure should be applied for the height difference between the location of the pressure measure-
ment (from in situ instrumentation or from NWM) and the reference point of the space geodesy
instrument. Commonly used formulas for the adjustment can be found in (Boehm et al., 2007b).
Alternatively, local pressure and temperature estimates could be determined with the empirical
model GPT (Boehm et al., 2007b) that has been developed similarly to the GMF, and is provided
as a Fortran routine, gpt.f, at <2> and <4>.

References

Bar-Sever, Y. E., Kroger, P. M., and Borjesson, J. A., 1998, “Estimating horizontal gradients of
tropospheric delay with a single GPS receiver,” J. Geophys. Res., 103, pp. 5019–5035.

Boehm, J., Werl, B., and Schuh, H., 2006a, “Troposphere mapping functions for GPS and very
long baseline interferometry from European Centre for Medium-Range Weather Forecasts
operational analysis data,” J. Geophys. Res., 111, B02406, doi:10.1029/2005JB003629.

4http://www.hg.tuwien.ac.at/∼ecmwf1

5



Boehm, J., Niell, A. E., Tregoning, P., and Schuh, H., 2006b, “Global Mapping Function (GMF):
A new empirical mapping function based on numerical weather model data,” Geoph. Res.
Letters, 33, L07304, doi:10.1029/2005GL025546.

Boehm, J., Mendes-Cerveira, P. J., Schuh, H., and Tregoning, P., 2007a, “The impact of mapping
functions for the neutral atmosphere delay based on numerical weather models in GPS data
analysis,” in Dynamical Planet — Monitoring and Understanding a Dynamic Planet with
Geodetic and Oceanographic Tools, IAG Symposium Series, 130, Springer-Verlag, Rizos, C.
and Tregoning, P. (eds.), pp. 837–843.

Boehm, J., Heinkelmann, R., and Schuh, H., 2007b, “Short Note: A global model of pressure and
temperature for geodetic applications,” J. Geod., doi:10.1007/s00190-007-0135-3.

Chen, G. and Herring, T. A., 1997, “Effects of atmospheric azimuthal asymmetry on the analysis
of space geodetic data,” J. Geophys. Res., 102, pp. 20,489–20,502.

Ciddor, P. E., 1996, “Refractive index of air: New equations for the visible and near infrared,”
Applied Optics, 35, pp. 1566–1573.

Ciddor, P. E. and Hill, R. J., 1999, “Refractive index of air. 2. Group index,” Applied Optics, 38,
pp. 1663–1667.

Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., and Elgered, G., 1985, “Geodesy
by Radio Interferometry: Effects of Atmospheric Modelling Errors on Estimates of Baseline
Length,” Radio Sci., 20, No. 6, pp. 1593–1607.

Davis, J. L., Elgered, G., Niell, A. E., and Kuehn, C. E., 1993, “Ground-based measurements of
the gradients in the “Wet” radio refractivity of air,” Radio Sci., 28, pp. 1003–1018.

Herring, T. A., 1992, “Modeling Atmospheric Delays in the Analysis of Space Geodetic Data,”
in Proceedings of Refraction of Transatmospheric Signals in Geodesy, Netherlands Geodetic
Commission Series, 36, The Hague, Netherlands, pp. 157–164.

Hulley, G. C. and Pavlis E. C., 2007, “A ray tracing technique for improving Satellite Laser
Ranging (SLR) atmospheric delay corrections, including the effects of horizontal refractivity
gradients,” J. Geophys. Res.,112, B06417, doi:10.1029/2006JB004834.

Ifadis, I. I., 1986, “The Atmospheric Delay of Radio Waves: Modeling the Elevation Dependence
on a Global Scale,” Technical Report No. 38L, Chalmers U. of Technology, Göteburg, Sweden.
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