Analysis of ionospheric errors and correction techniques in high-rate GPS glaciology

J. de Juan¹, P. Elosegui¹, J.L. Davis², M. Nettles³, T.B. Larsen⁴

¹Institute for Space Sciences, CSIC-IEEC; ²Harvard-Smithsonian Center for Astrophysics; ³Lamont-Doherty Earth Observatory; ⁴Geological Survey of Denmark and Greenland

Scientific Motivation

Helheim 2007 66.50 66.45 38.7 38.6 10 m/day

GPS-derived average glacier flow

- GPS is starting to be used on fastflowing glaciers to investigate detailed kinematics & dynamics
- Requires small station spacing (~km) over small network size (~20 km)
- High position accuracy is required at wide range of time scales, from sec (speed-ups associated with glacial EQs) to months (seasonal)
- GPS receivers are at high risk for loss
- Can we use L1-only systems to reduce cost without sacrificing accuracy?

Experimental approach

Problem: Assess accuracy of high-rate L1-only solutions in a fast-flowing glacier environment.

Method: Compare LC and L1 high-rate GPS solutions processed using TRACK (GAMIT/GLOBK) for different baselines and configurations:

- 10-m, rock sites (static)
- ◆ 3.5-km, glacier sites (flow~12 m/d)
- ◆ 14-km, glacier sites (flow~22 m/d)
- ✓ RMS statistics
- ✓ Position estimates

Statistics for rock site: 10-m baseline

Statistics for glacier site: short baseline

Baseline ~ 3.5 km Velocity ~ 12 m/d

Statistics for glacier site: long baseline

Baseline $\sim 14 \text{ km}$ Velocity $\sim 22 \text{ m/d}$

Statistics for all glacier sites

- **LC** \rightarrow RMS baseline independent: RMS \sim 8-15 mm
- **L1** \rightarrow RMS baseline dependent: RMS = 5 mm + 1 mm/km * Baseline Length

Estimates for glacier site: short baseline

Baseline ~ 3.5 km Velocity ~ 12 m/d

LC solution

L1 solution -

Day of year (2007)

Estimates for glacier site: long baseline

Baseline $\sim 14 \text{ km}$ Velocity $\sim 22 \text{ m/d}$

L1 solution - LC solution

Day of year (2007)

Ability to resolve glacier speed-ups

Ability to resolve glacier speed-ups

Conclusions

- + RMS baseline-length dependence, L1 vs LC:
 - Short baseline (<6 km): L1 more precise than LC.
 - Long baseline (>6 km): L1 precision is time dependent, LC is better overall.
- + The RMS is a combination of errors associated with multipath, fast flow, and others.
- Increasing L1 RMS with increasing baseline length suggests a significant ionospheric contribution to the L1 error, though its temporal variation remains to be explained.
- + Mean position differences between L1 and LC are less than 6 mm over 24h.
- + Maximum L1 LC instantaneous position difference is less than 30 cm.
- + L1 suitable for detection of glacier speed-ups associated with glacial earthquakes.
- But remember we are at the minimum of an 11-year ionospheric cycle and at high latitudes, so evaluation will continue into the future.