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1. Motivation
The open problem to evaluate the statistical property           
of GPS carrier phase observables

Ever since von Mises (1918) introduced the von Mises normal distribution on 
the circle, its importance has not been recognized by the data analysts; 

In practice, this fact is often ignored, for example, the statistical property of 
the GPS carrier phase observations are simply regarded as Gauss-Laplace normal 
distribution. And most of the existed validation and hypothesis tests (e.g. χ2-test, 
F-test, t-test, and ratio test etc.) about the float and fixed solution of GPS mixed 
integer model are performed under this assumption;

But according to our new research results (Cai, et al., 2007), the GPS carrier 
phase observables that are actually measured on the unit circle have been 
statistically validated to have a von Mises normal distribution; 

Therefore these validation and hypothesis testing procedures based on the 
Gauss normal distribution should be improved accordingly;

Since the distributions of the statistics commonly used for inference on 
directional distributions are more complex than those arising in standard normal 
theory, bootstrap methods are particularly useful in the directional context.
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The observation equation of the GNSS carrier phase 
measurement 
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2. Brief review of statistical property of the 
GNSS carrier phase observables

The von Mises distribution (1918) has the same important statistical role 
on the circle as the Gauss normal distribution on the line. 

The Fisher distribution (Fisher 1953) is of central important on the 
sphere for the three dimensional directional data. 

For the higher dimensional directional data the Langevin distribution is 
developed.
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The density function of the von Mises (k=1.138) 
and Gauss-Laplace normal distribution (σ=1.189)

The von Mises distribution: 
PDF of a circular random variable θ with von Mises distribution:
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Test the statistical property of GPS carrier phase

GPS observation set: 

Short baselines test data:  2 hour observations with 20 second 
sampling rate at four baselines (2~3 km) in 2005. 

Phase baseline lengths were calculated using observations above 10º

There are total 7198 L1 double difference phase observables, where 
these fractional phases are scaled to              . [ ]−π, π
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Example: L1 double difference phase observables with 
σ=0.00973 (cycles) ~ 1.85 mm

(7198 measurements observed on four short baselines in 2005)
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Example: Linear histogram of the L1 double difference phase 
observables
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Example: Rose histogram of the L1 double difference phase observables 
and the mean value. ( Note the arithmetic mean is +359°.34)

0 358 .74µ = +
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Example: Linear histogram of the L1 double difference phase 
observables and the von Mises distribution and Gauss-Laplace fits
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Example: Gauss-Normal and von Mises Q-Q plots for the L1 
double difference phase observables

The purpose of the quantile-quantile plot is to determine whether the sample
in X is drawn from a specific (i.e., Gaussian or von Mises) distribution, or 
whether the samples in X and Y come from the same distribution type.
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Test for goodness-of-fit:

With calculation of the statistic 
2
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where  f i is the frequencies in interval i and pi is the probability related certain 
distribution and n is the total sample number.
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Since χ2(VM)=59.5 is less than                               the null hypothesis that the sample is 
von Mises distributed cannot be rejected. 

• Indeed the close agreement between the observed and expected frequencies suggests   
that the von Mises distribution provides a “good fit”.
• But the hypothesis of Gauss-Laplace normal is rejected since the fit results  
χ2(GN)=251.4 is far greater than the critical value of 63.16.

2
0.0001(27) 63.16χ =



14

3. Bootstrap methods for the confidence domains/ 
hypothesis tests 

Bootstrap methods: 
A data-based simulation method derived from the phase to pull 
oneself up by one’s bootstrap;
In statistics the phase ‘bootstrap method’ refers to a class of 
computer-intensive (resampling) statistical procedures, which is    
one of the modern statistical technique since 1980s;
To be helpful for carrying out a statistical test or for assessing the 
variability of a point estimate in situations where more usual 
statistical procedures are not valid and /or not available 
(e.g. the sampling distribution of a statistic is not known);  
Yielding more accurate results than Gaussian approximation;
One of the principal goal – to produce good confidence intervals 
automatically;
Since the distributions of the statistics commonly used for inference 
on directional distributions are more complex than those arising in 
standard Gauss normal theory, bootstrap methods are particularly 
useful in the directional context.
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Schematic of the bootstrap process for estimating the standard 
error of a statistic s(x). B bootstrap samples are generated from 
the original data set.  (after Efron and Tibshirani, 1993)



16

The bootstrap algorithm for estimating the standard error of a
statistic             ; each bootstrap samples is an independent random 
sample of size n from    .  (after Efron and Tibshirani, 1993)

ˆ ( )sθ= x
F̂
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Two distinguished Bootstrap methods:
Parametric bootstrap – a particular mathematical model is available;

Nonparametric bootstrap – without such mathematical model. 

Two Bootstrap analysis methods for linear model:

Bootstrapping Residuals - Fit the linear model and obtain the n
residuals: ∗ = +y Gγ e

Bootstrapping Pairs - Resampling on the pairs of one observable and 
cooresponding row of design matrix: ∗∗ ∗∗= +y G γ e

In the linear model context, these bootstrap methods provide inference 
procedures (e.g. confidence sets) that are more accurate than those 
produced by the other methods. 
Just the case for the validation and hypothesis tests of the float and fixed 
estimates of GPS mixed models in the directional context, with the 
emphasis on the determination of the confidence intervals of the estimates. 
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Bootstrap analysis method for linear model:

Bootstrapping Residuals - Fit the linear model and obtain the n residuals

Choose a sample of size n from the residuals, generated with the 
probability 1/n for each residual, and sample with replacement. Attach 
these sampled values to the n predicted     to give a resampled set of y’s.ˆ iy

Thus if the model is                                       obtained by the LS estimator), 
the new bootstrapped y-values are  

where     is a resampled set from the vector

ˆ ˆˆand (= + =y Gγ e y Gγ γ

ˆ∗ ∗= +y Gγ e
∗e ˆ ˆ.= −e y y

LS estimation is now performed on the model 

to obtain an estimate    . As many iterations as desired can be performed, 
and the usual sample mean and sample standard deviation of those vector 
estimates can be found, which allows constructing confidence domains of 
the estimated parameters.

∗ = +y Gγ e
ˆ∗γ

Normally we can perform the resampling iterations with 1000 times.
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GPS DD obs. Eq.

Fix the ambiguity
with FARA, LLL or
LAMBDA method

Estimate of the 
coordinate unknowns

Float solution with LS

Bootstrapping confidence intervals for the float solutions 

Hypothesis tests

GPS DD obs. Eq.

Fix the ambiguity
with FARA, LLL or 
LAMBDA method

Estimate of the 
coordinate unknowns 

Float solution with LS

Confidence Intervals 
for the float estimates

Bootstrapping Residuals
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Testing with GPS observation set: 

Short baselines test data:  about 2 hour observations with 20 second 
sampling rate at one baselines (~3.6 km); 

Phase baseline lengths were calculated using observations above 10º;

There are total 320 L1 double difference phase observables;

For the testing observation period 5~20 epochs there are 11 unknown
parameters, including 3 coordinate differences and 8 ambiguities.
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The LS float estimates and their confidence intervals 
of the GPS mixed integer linear model (20 epochs).
The float estimates and their confidence intervals 
with the bootstrapping residuals methods (20 epochs).

The comparison of the float estimates and their 
confidence intervals with the LS and bootstrapping 
residuals methods (20 epochs).
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The comparison of the float estimates and their 
confidence intervals with the LS and bootstrapping 
residuals methods (15 epochs).

The comparison of the float estimates and their 
confidence intervals with the LS and bootstrapping 
residuals methods (10 epochs).

The comparison of the float estimates and their 
confidence intervals with the LS and bootstrapping 
residuals methods (5 epochs).
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Analysis of the Bootstrapping confidence intervals for 
the float solutions: 

Bootstrapping residuals for linear model provides us an efficient and 
accurate algorithm to construct the confidence domains of the GPS 
float solutions;

The bootstrapping confidence intervals are consistent with the LS 
confidence intervals based on the t-test. 

Both kinds of the confidence intervals all cover the potential correct 
fixed ambiguity integers, which are important for searching process 
and fixed solution. 

But the bootstrapping confidence intervals are derived without any 
assumption about the probability distribution of the observations.

Note: The Bootstrapped confidence sets are slightly varied among the 
every resampling (simulation) process.
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4.  Conclusion and outlook

The statistical property of the fractional phase measurements of the
GPS double difference carrier phase is validated  as von Mises distribution;

The classical testing theory (such as, t-test, χ2-test, F-test and the related 
ratio-test) can not be simply applied to the GPS data analysis since the GPS 
carrier phase observables are not Gauss normally distributed anymore;

We have studied the bootstrap algorithms and successfully applied the 
efficient bootstrapping residuals method to construct the confidence domains 
of the GPS float solutions;

This answers the open question mentioned above and provides a complete 
solution for the estimation and hypothesis tests on the parameters of the 
GPS mixed integer linear models in the directional context.
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Thank you !


