Predicting Atmospheric Biases for Rapid AR in PPP

Xiaohong Zhang, Xingxing Li, Maorong Ge

Helmholtz Centre Potsdam

Outline

- Background
- Rapid Re-initialization methods
- Results and analysis
- Conclusions

1. Background

Current state of real-time PPP

- widely applied in precise surveying, navigation, timing, meteorology....
- float solution, 5-10cm of accuracy, >30 minutes of initialization time
- fixed solution in recent years, improved accuracy of 3-5cm, shortened initialization time of about 15 minutes

1. Background

Re-initialization problem

- In practical application, especially in the city, GPS satellite signal blocking or interruption results in frequent ambiguity resetting. It requires a long time to recover correct ambiguity.
- Compared to NRTK, no double-difference is made in PPP, biases from clock, orbit, especially atmosphere will be a significant limitation for rapid re-initialization.

2. Methods to overcome the re-initialization problem

- time-difference solution with WL/GF, ignore the ionospheric variation (Banville,2009)
- re-converge rapidly from 1000s to 25s with ICAF WL observations (Geng,2009), and improved to few seconds using WL instead of noisy MW (Geng,2010)
- cycle-slip fixing based float solution (Zhang and Li,2010)

Epoch-by-Epoch Ionospheric Bias Estimation

ZD ambiguity is successfully fixed after the initialization, coordinates with cm level accuracy and zenith path delay (ZPD) with mm-level accuracy could be obtained with the GPS observations collected during the initialization stage at the PPP user end. It is straightforward to compute zero-difference ionospheric bias accurately with the following equation:

$$I_{i}^{k} = \rho_{i_{g}}^{k} - L_{i}^{k} + T_{i}^{k} + \lambda(f_{i} - f^{k}) + \lambda N_{i}^{k} + \mathcal{E}_{i}^{k}$$

Epoch-by-Epoch Ionospheric Bias Estimation

Relationship of estimated ZD ionospheric delay and 1/SIN (E)+

Apparently, strong temporal correlation exists. These biases exhibit a high degree of correlation with elevation angle.

Temporal Modeling and Prediction of Ionospheric Bias

A linear bias model based on sliding window is adopted for modeling and prediction. A certain amount of epochs (few minutes are generally appropriate) are selected as timeline window.

The following elevation-angle-related variance function is also taken into account, in which E is satellite elevation angle:

$$\sigma^{2}(E) = \begin{cases} \sigma^{2} & , E \ge 30 \\ \sigma^{2} \square \sin(E), 5 \le E < 30 \\ 0 & , E < 5 \end{cases}$$

Temporal Modeling and Prediction of Ionospheric

The predicted error of ionospheric path delays with different latency+

To establish more precise atmospheric temporal model by taking elevation angle and other factors into consideration.

Helmholtz Centre

POTSDAM

Bias

Instantaneous Ambiguity Resolution with

Predicted Ionospheric Bias

The atmospheric information derived from previous fixed epochs is passed to subsequent new epochs for connecting the data gap . The corrected ZD carrier phase observation could be employed to implement the instantaneous AR.

Helmholtz Centre

POTSDAM

Performance of Instantaneous AR

Helmholtz Centre **Potsdam**

a moving trajectory, lasting approximately 5 hours, Trimble dual-frequency GPS receiver with 1-s sampling interval

Ship-borne and Airborne Data

GFZ

POTSDAM

Space-borne Data (Grace A and B)

3 Conclusion and outlook

- ZD ambiguities could be fixed successfully with one epoch even if all satellites are interrupted and the signal interruption lasts up to 200s.
- Ioss lock does not always occur on all carrierphase measurements at one epoch, the continuous phase measurements can be used to constrain the ambiguity candidates search space.
- data gap can be possibly extended longer if more precise temporally atmospheric prediction is available.

Helmholtz Centi

POTSDAM

Thanks for your attentions!

Helmholtz Centre **Potsdam**

