

Assessment of high-rate GPS using a single-axis shake table

S. Häberling, M. Rothacher, A. Geiger

Institute of Geodesy and Photogrammetry, ETH Zurich

Introduction

Project:

 \rightarrow Study the applicability of high-rate GNSS for seismology

Kinematic GPS L1/L2 measurements (100Hz) with static antenna Zero-baseline and very short baseline (\sim 5m)

 \rightarrow Correlations and noise level

Kinematic GPS L1/L2 measurements (100Hz) with 1D shake table Very short baseline (\sim 5m)

 \rightarrow Dynamic characteristics of the GPS receiver

Kinematic GPS Measurements with 100Hz

Zero-Baseline

- Carrier phase noise
- Internal receiver errors

Kinematic RMS: East = 0.4 [mm]North = 0.6 [mm]Up = 0.9 [mm]

5m Baseline

- Multipath
- Different antenna characteristics

Kinematic RMS: East = 2.4 [mm] North = 3.2 [mm] Up = 5.9 [mm]

April 24, 2012

April 24, 2012

EGU 2012 Vienna

Shake Table - Schematic Overview

Amplifier

Shake Table

- max. acceleration = 2.5 [g]
- max. velocity = 0.4 [m/s]
- max. frequency = 20 [Hz]
- max. amplitude = 7.5 [cm]

Inductive Sensors

- resolution = 0.006 [mm]
- sampling rate = 2.4 [kHz]
- time synchr. < 0.4 [ms]

Total Uncertainty: < 0.1 [mm]

First Tests with the Shake Table

Sine Oscillations

Frequencies: 0.1 – 20 [Hz] Amplitudes: 1 – 50 [mm]

 \rightarrow acceleration dependent amplitudes and phases

April 24, 2012

Sine Oscillations – Phase Shift

Sine Oscillations – Different Receivers

Sine Oscillations (5mm Amplitude)

PLL = 50Hz, DLL = 5Hz

PLL = 10Hz, DLL = 1Hz

- 100Hz GPS ---- Inductive Sensor

EGU 2012 Vienna

Sine Oscillations (5mm Amplitude)

100Hz GPS — Inductive Sensor

EGU 2012 Vienna

Sine Oscillations (5mm Amplitude)

CA/L1 PLL = 50Hz, DLL = 5Hz

CA/L1 PLL = 10Hz, DLL = 1Hz

P/L2 PLL = 3Hz, DLL = 3Hz

P/L2 PLL = 3Hz, DLL = 3Hz

Conclusions

- Tracking loop parameters directly influence the noise level and position correlations
- Accuracy of dynamic GPS measurements depends on acceleration and tracking loop parameters
- Similar behaviour of the L1 and L2 signals
- Minimization of the errors by inverse filtering

Next Steps

- Longer baseline (~100km)
- Problem of loss of lock
- 3D Robot for larger amplitudes

THANK YOU FOR YOUR ATTENTION

High-Frequency Noise: 5m Baseline

RMS for kinematic coordinates:

PLL = 10Hz, DLL=1Hz

- East = 1.8 [mm]
- North = 1.9 [mm]
- Up = 3.8 [mm]

PLL = 50Hz, DLL = 5Hz

East = 1.9 [mm] North = 3.6 [mm] Up = 5.0 [mm]

Position Correlations: 5m Baseline

